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Abstract. We present in this paper a novel framework for the design
of a modular and adaptive partial-automation wheelchair. Our design in
particular aims to address hurdles to the adoption of partial-automation
wheelchairs within general society. In this experimental work, a single
assistance module (assisted doorway traversal) is evaluated, with arbi-
tration between multiple goals (from multiple detected doors) and mul-
tiple control signals (from an autonomous path planner, and the hu-
man user). The experimental work provides the foundation and proof-
of-concept for the technical components of our proposed modular and
adaptive wheelchair robot. The system is evaluated within multiple en-
vironmental scenarios and shows good performance.

1 Introduction and Related Work

We envision a future where the partial-automation of powered wheelchairs will
be the standard: that when a person is being fit for a wheelchair by a therapist, a
variety of autonomy options will be available, just like today a variety of seating
options are available.

While many individuals achieve sufficient mobility using manual and powered
wheelchairs, a survey of 65 clinicians within the United States found that between
10% and 40% could not be prescribed either [1], leaving those individuals reliant
on a caretaker for mobility. The potential for “smart” wheelchairs—which incor-
porate robotics technologies—to aid the mobility of those with motor or cogni-
tive impairments has been recognized for decades [2]. A survey of epidemiological
data estimates that between 1.4 and 2.1 million individuals would benefit from
a smart wheelchair at least some of the time [3]. Robotics autonomy can help
with obstacle avoidance, navigation, route planning and spatially-constrained
maneuvers. However, despite decades of development, and significant advances
in capabilities [4, 5], control [6–8] and interfaces [9, 10], very few smart wheelchair
technologies have made the transition to the public and commercial sectors.1

One dominating confound to practical adoption is cost: At least in the short
term and within the United States, these technologies will not be covered by
Medicare/Medicaid or insurance plans, and so any system that is going to be of

1 Exceptions include the Smart Wheelchair from Smile Rehab [11] and TAO-7 Intel-
ligent Wheelchair Base from AAI Canada [12].
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Fig. 1. Schematic of our full control architecture with adaptation. Behavior parameters
θB and control sharing strategy parameters θΛ are adapted in response to cues from
the user and metrics computed from data observed by the robot’s sensors about world
state s. The high-level behavior controller generates goals g, and the low-level behavior
controller generates control commands u.

practical benefit to general society must be reasonable to finance out of pocket.
The general trend for the majority of work in smart wheelchairs has been to
offer a complete system: that is very capable, but also involves a fair amount
of infrastructure, and components that are costly. Many are developed in their
entirety from the ground up, including the wheelchair hardware and software
systems [13–18]. While this is the most common approach for smart wheelchair
development, some projects do take a modular approach: to software, for example
to accommodate multiple control interfaces [14, 15] or sensor modules [19]; or to
hardware, to be able to interface with existing powered wheelchairs [15–17].

An important observation is that users of assistive devices overwhelmingly
prefer to retain as much control as possible, and cede only a minimum amount
of control authority to the machine [20, 21]. Thus, many smart wheelchairs offer
a variety, often a hierarchy, of autonomous and semi-autonomous control modes
within their shared control schemes [14, 22, 23]. Others explicitly target low-
profile automation [10, 24], create new customized levels of autonomy [25], or
blend the user’s control commands with the automation’s control commands [21,
26, 27]. Most commonly, shared-control smart wheelchair platforms place the
high-level control (e.g. goal selection, route planning) with the user, and the
low-level control (e.g. motion control commands, obstacle avoidance) with the
machine [6, 14, 28–30].

In this paper, we introduce a system that prioritizes customization, modu-
larity and the use of commercial hardware, to facilitate practical adoption by
users. The result of this project will be a complete system consisting of modu-
lar software and hardware components, easily added to a commercial wheelchair
platform, and able to be customized to and by the user. We present in this paper
our control framework, and first expermimental results.
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2 Technical Approach

We introduce a system of modular software and hardware components—which
scale with a user’s physical needs, financial means and personal preferences. The
framework introduced in this section will be grounded in Section 3 with concrete
implementations of goal arbitration and control sharing, including example data.

2.1 High and Low Level Behaviors

Our control framework (Figure 1) assumes the existence of a set B of autonomous
robot behaviors, and a set Λ of control sharing strategies. The user is able to se-
lect a custom set Bu ⊆ B of behaviors. The set B furthermore is partitioned into
high-level behaviors Bh and low-level behaviors B`. In our work with wheelchair
navigation, behaviors in Bh typically are associated with planning (e.g., path
generation), while behaviors in B` are associated with motion generation (e.g.,
path driving).

A high-level behavior bh ∈ Bh outputs a goal g given state input x,

g ← bh(x) (1)

Each autonomy goal g is evaluated for confidence cg that it is the user’s goal. A
goal g is passed to the low-level control module only if its confidence is both over
threshold, τg < cg, and significantly higher than the second-highest confident
goal, δτg < cg − cg◦ . (Grounded in Section 3.1.)

A low-level behavior b` ∈ B` outputs a control command u given state input
x and goal g,

u← b`(x, g) (2)

(Figure 2). Within the low-level control module, commands generated by the
autonomy are then reasoned about within the control sharing logic. (Grounded
in Section 3.2.)

The robot autonomy and control sharing components together enable a flex-
ible and modular architecture, where any combination of autonomy behaviors
in B can be selected by the user for inclusion in Bu. The autonomy resolves
conflicts between competing behaviors in Bu—via a resource controller that
registers the data and control signal needs of each behavior b ∈ Bu, as well as
what data that behavior provides. The robot autonomy and control sharing also
reason about human input—which might play a role in behavior selection, be
a cue for an already-running behavior or be blended with autonomy-generated
commands for reasons of safety.

2.2 Control Sharing

A control sharing strategy λ ∈ Λ can take on one of three formulations: 1. All
control to the user; 2. All control to the automation; or 3. A shared control
formulation that blends the two control inputs.
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Fig. 2. Schematic of a behavior controller within our system. (Low-level; an equivalent
architecture is used for the high-level behavior controller.) The behavior controller
considers multiple autonomous behaviors (in Bu) and considers user control signals
(uu) to produce a single blended output signal (u).

Each behavior b ∈ B has an associated control sharing strategy λb ∈ Λ. A
strategy λb furthermore has an associated set of values θλb

, that parameterize
the unction used to blend the user command uu and autonomy command ur.
Thus, each autonomy behavior b has associated with it a unique combination of
control sharing strategy λb and paramterization θλb

for that strategy.

2.3 Adaptation

A defining feature of our architecture is the adaptation of the autonomy behav-
iors in Bu and control strategies Λu associated with them.

Each behavior b ∈ B available within our system has an associated set of
parameters θb which are available for modulation by the adaptation component
of our framework. For example, the path planner [31] used on our development
platform (Figure 4) has parameters to modulate how much curvature there is in
the generated trajectory, and how aggressively the robot will attempt to reach
the goal position.

Similarly, each control sharing strategy λ ∈ Λ has an associated set of param-
eters θλ which are available for modulation by the adaptation component of our
framework. For example, in a linear control sharing formulation, the parameter
which dictates how much control is allocated to the user might be increased as
the user becomes a more proficient driver.

Exactly what influence the parameters θb have on associated behavior b (and
parameters θλ on strategy λ) varies greatly across behaviors (and strategies).
However, the approaches used to modulate the parameters will be common across
behaviors and strategies, and any number of machine learning algorithms may
be used to perform this modulation. One key factor to consider will be the feed-
back signal received by a machine learning algorithm—which will be computed
autonomously from environmental cues and also gathered from the user, who
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not only is a non-expert in the area of robotics but additionally has motor im-
pairments and provides signals through a possibly limited control interface (e.g.,
used to drive the wheelchair).

2.4 Integration with Commercial Hardware

Lastly, each behavior has an associated specification ϑ of what form of input
signals it expects to receive from the human user, which will change depending on
the control device employed. For example, a traditional 2-axis joystick provides
a 2-D continuous-valued control signal; while a Sip-N-Puff interface typically
provides a 1-D non-proportional control signal, whose magnitude does not scale
with the magnitude of the user’s input (i.e., blowing or sucking). For a given
human-input specification ϑ, the set B is partitioned into a subset of behaviors
Bϑ which satisfy that specification.

Fig. 3. Left: Sip-N-Puff control in-
terface [32], where commands are
issued by blowing and sucking on
a straw. Right: Switch-based elec-
tronic head array with three prox-
imity sensors [33].

Our system will prioritize good perfor-
mance with non-proportional control inter-
faces (e.g., Figure 3), which we believe pro-
vide a greater opportunity for autonomy to
make an impact—since control with these
devices is more difficult. More broadly, the
interfaces used for human input will be re-
stricted to those which are commercially
available. Not only is this technology exten-
sively validated (having been evaluated by
thousands of users), but it also is covered by
insurance—and thus, from the standpoint of financial feasibility, more readily
accessible to users.

To interface with multiple electronics packages from different wheelchair ven-
dors, our proposed add-on system will be inserted between the input device and
the control module of the commercial wheelchair system (Figure 4, right). Sev-
eral makes and models of wheelchairs are specifically designed to accept signals
from expandable input controllers,2 which present the user’s signals to the pro-
prietary control electronics. Importantly, presenting our control signals to an
expandable input mechanism should not void the wheelchair warranty.

By restricting our system to integrate easily with commercial hardware and
maintain a low price point, we are knowingly making trade-offs with respect to
how “complete” the system is in the capabilities it offers to the user. The idea
is that, in exchange, the system becomes more accessible, and transfer to the
general public thus more feasible.

2 Including: the Q-Logic system from Pride Mobility; PG Drive Systems’ R-Net elec-
tronics system used by Permobil, Pride Mobility, and Sunrise Medical; and the MK6i
electronics system used by Invacare [34, 35].
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Fig. 4. Left: Development platform. A differential drive mobile robot built on a
wheelchair base, with a ring of IR and ultrasonic sensors and a top-mounted Kinect.
Right: Proposed integration with commercial wheelchair platforms. Signals from the
user input device (e.g., joystick) are interrupted and processed, along with data from the
onboard sensors, within our smart wheelchair PC system. Control signals—generated
by the human (i.e., unmodified input signals), by the automation, or a blend of the
two—are then sent to the commercial control module of the wheelchair.

2.5 Development Platform

Our development platform (Figure 4, left) consists of a Pride Mobility Quan-
tum 600 base [36], modified to be drive-by-wire (including inverter and wheel
encoders) by Sensible Machines [37]. To this we have added the sensing and
computing components detailed in the first column of Table 1.3

Column 2 details our proposed modular add-on components to a commercial
wheelchair. The base system components are detailed ($670), along with con-
figurations that add IR and ultra-sonic sensors ($940) and an IMU ($1140). In
comparison with the development platform, the add-on system additionally re-
quires an inverter and input device interface board; in order to interface with the
expandable input mechanism of various commercial wheelchairs. This modular
system will be interfaced with participants’ own wheelchairs in future subject
studies.

The base system, consisting of only a Kinect sensor, is evaluated in the
following section. All software has been developed within the Robot Operating
System (ROS), with each high and low level behavior operating as an individual
ROS node. Customization thus consists of bringing up only those nodes identified
in Bu, and having the resource controller reason about and resolve any conflicts
between those nodes.

3 Full specifications: IR range sensor = Sharp GP2Y0A02YK IR distance sensors;
Ultra-sonic range sensor = Maxbotix LV-MaxSonar-EZ1 Ultra-sonic range sensors;
Sensor interface board = Arduino Mega2560; mini-PC = Shuttle XH61 mini-PC
with Intel i7-2600S processor, 16GB DDR3 SDRAM, and 40GB solid state hard
drive; Embedded computing = 2 x Hard Kernel ODroid U2; Input device interface
board = Arduino Due DEV-11589; IMU = Pololu CHR-UM6 9-DoF IMU.
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Development Platform (current) Modular Add-on Components

1 x Input device interface board $50
1 x Inverter $120

1 x Microsoft Kinect $150 1 x Microsoft Kinect $150
1 x mini-PC $700 1 x Embedded computing $350

Total: $670
10 x IR range sensors $250 4 x IR range sensors $100

4 x Ultra-sonic range sensors $120 4 x Ultra-sonic range sensors $120
1 x Sensor interface board $50 1 x Sensor interface board $50

Total: $1020 Total: $940
1 x IMU $200
Total: $1140

Table 1. Hardware specifications of our development platform, and the modular add-
on components system to augment a commercial powered wheelchair.

3 Assessment

In this experimental work, a single assistance module (assisted doorway traver-
sal) is evaluated, with arbitration between multiple goals (from multiple detected
doors and the inferred user’s goal) and multiple control signals (from an au-
tonomous path planner and the human user).4 Doorway navigation was chosen
as a task frequently cited as challenging for powered wheelchair drivers, due to
tight spatial constraints [1]. Doorways are identified by our autonomous doorway
detection algorithm [38], which provides both the location and orientation of an
observed doorway.

Our system has been evaluated under various testing conditions, from which
illustrative results are presented here. The system was found to successfully
identify multiple high-level goals, autonomously, and then reason between them
within the goal arbitration module. Speed commands generated by the au-
tonomous motion planner and the human operator were blended, with the result
of successful and safe task execution.

3.1 Goal Inference and Arbitration

Our first assessment concerns the arbitration between multiple goals, including
the user’s inferred goal—to ground the framework presented in Section 2.1.

We infer the user’s goal from only those control signals used to teleoperate
the wheelchair (rotational and translational speed commands). While there are
undoubtedly many advantages to using custom interfaces like touch screens,
that are tailored to the task or a user’s particular needs, our intent here is to
instead to push the limits of existing commercial control interface technologies
by using software solutions whenever possible. Also, while small screens with

4 Implementation of the adaptation components of our framework are currently under
development, and are not included in this assessment.
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Fig. 5. Example environment scenario, with two side-by-side doors.

menu-based interfaces are available with many control devices (especially ones
like in Figure 3), menu navigation with these interfaces can be cumbersome. Our
aim is for the user to be able to indicate their goal or preference more intuitively.

To infer the user’s immediate goal gu, our system maintains a smoothed
estimate ũu of the user’s command, weighted by the time since the last update:

ũtu ← κ · utu + (κ− 1) · ũt−1
u (3)

κ = e−∆τ

where ∆τ is the difference between the timestamps of ũt−1
u and utu. The smooth

command is then forward projected to calculate the immediate user goal gu (in
our implementation, the projection time is 3.0s).

To determine which of the autonomy goals might be the user’s final (high-
level) goal, a confidence measure is computed for each autonomously detected
goal. Associated with each autonomy goal g is a set of N navigation goals
{ginav}Ni=0. Navigation goals are executed as a sequence, with one goal g?nav ∈
{gnav} active at a given time. For example, during doorway assistance two nav-
igation goals are set (N = 2), along the normal of the pose of the identified
door on opposite sides of the door frame—achieving the first aligns the robot
for doorway traversal and achieving the second has the robot pass through the
doorway.

In our implementation, the confidence cg ∈ [0, 1] associated with an observed
goal g is calculated based on the distance d and heading φ (absolute value) to
the current active navigation goal g?nav:

cg = cp ·
(
β ·

(
2

1 + eφ

)
+ (1− β) ·

(
2

1 + ed

))
(4)

β = min (1, d)
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where cp ∈ [0, 1] is the perception confidence from observing g.5 The parameter
β dictates that when the robot is far from g?nav (d > 1m), aiming towards the
navigation goal (φ→ 0) during driving matters most; while closing the distance
matters most when near to g?nav.

Fig. 6. Confidence associated with autonomously observed goals. Two doors (light blue,
dark blue) exist within the environment; a third (dark red) is falsely identified. Plot
panels show (top→bottom) goal confidence cg, distance to navigation goal d, heading
to navigation goal φ and perception confidence cp. At the start of the run, only the
false positive door is observed, however the low perception confidence keeps the overall
confidence cg also low. As the robot turns towards the doors, both are identified with
similarly high confidence. As the user issues commands that show preference for Door
B, its confidence rises until it is sufficiently greater than that of Door A for Door B
to become the active goal (first star). The user initially retains control however, as
dictated by the associated control sharing strategy (under the condition that the user
continues to issue commands). When the user ceases issuing commands (second star),
the autonomy takes over in full. Robot ground path shown in dark gray.

5 Since d and φ are both always positive, the logistic function (fractions in parentheses)
range is [0, 0.5]. The factor of 2 in this equation compensates for this fact, so that
the range of cg becomes [0, 1].
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If there exists a goal g whose confidence is both above threshold and sig-
nificantly so (δτg < cg − cg◦), this goal is considered active and passed to the
low-level control module. If no autonomy goal is active, then the user-inferred
goal is sent instead.

Figure 6 shows the goal confidence calculated over a sample run in an envi-
ronment with two side-by-side doors (Figure 5).

3.2 Command Arbitration and Safety Monitoring

Our second assessment concerns the sharing of control between the user and the
autonomy—to ground the framework presented in Section 2.2.

Goals passed from the high-level behavior module, post-arbitration, and pre-
sented to the low-level control module to generate control commands. In the pre-
sented assessment, the low-level controller is a velocity-based path planner [31],
which generates rotational and translational speeds for robot. The autonomy
command ur is blended with the user’s command uu, according to the control
sharing strategy λb associated with the behavior b that generated the goal g.

Fig. 7. Nimble transfers of control authority during control blending. The user never
relinquishes control (indicated via all non-zero commands) as s/he drives near to an
autonomously detected goal (blue dots), which is also near an obstacle. The autonomy
therefore never takes control with the aim of achieving the detected goal. However, as
the robot path (dark gray line) nears the obstacle, the autonomy gradually takes over
some of the control (reduced α, dashed line in plot) to avoid collision. When the user
turns away from the obstacle and goal however, the autonomy immediately transfers
control back to the user (α = 1).
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The results presented in Figures 6− 8 utilize a linear control blending for-
mulation:

u← α · uu + (1− α) · ur (5)

α ∈ [0, 1]

The automation command ur is generated by the path planner, which takes the
inferred user goal gu as its target.

The control sharing strategies implemented within our architecture to date
include: all-user (α = 1); all-autonomy (α = 0); blending-zero-relinquish (0 ≤
α ≤ 1), where a zero command from the user is interpreted relinquishing control
to the autonomy; and blending-zero-stop (0 ≤ α ≤ 1), where a zero command
from the user is interpreted as a stop command.

Figure 7 presents the blending of control commands issued by the user and
the autonomy during a sample run in the presence of a detected autonomy goal
when the user never reliquishes control (under sharing strategy blending-zero-
relinquish).

Before the command u is passed to the robot for execution, it is assessed for
safety by forward projecting (3.0s) the command and evaluating the resultant
path for collisions. If the projected path collides with an obstacle, the control

Fig. 8. Command blending to maintain safety. As the forward projection of the user’s
commands (green in plots) generate a path which collides with an obstacle, control is
iteratively shifted from the user to the autonomy (by reducing the value of α). The
resultant blended command (light blue in plots) prioritizes foremost safety, but also
keeping as much control as possible (and within the constraints of θλ) with the user.
Robot ground path shown with colors that reflect the value of the control blending
parameter α at that time.
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balance is iteratively shifted away from the user and to the autonomy, whose
path planner is accounting for obstacles, until the resulting command projection
no longer results in a collision.

Specifically, α is initialized to the value specified in θλ, but decremented
according to α ← α − δα if the projected path collides with an obstacle. The
decrementation is incremental, until either the projected command no longer
collides with an obstacle or all of the control lies with the automation (α = 0).
This paradigm is a balance between competing aims: keeping control maximally
with the user (i.e., α as large as possible), but limiting the number of forward
projection roll-outs (to limit computational costs). In practice δα = min(α5 , 0.1),
and so the upper limit on the number of roll-outs that might occur is 10.

Figure 8 presents the blending of control commands issued by the user and
the autonomy during a sample run in the presence of an obstacle and user
commands that would collide with that obstacle.

4 Conclusions and Future Work

The customization of exactly which behaviors are selected for inclusion in Bu

is one mechanism by which customization to the user’s physical abilities and
preferences is accomplished. The other mechanism will be the adaptation of the
autonomous behaviors in Bu, and of the control strategies Λu associated with
them (Figure 1). The idea is to leverage machine learning to autonomously adapt
the autonomy behaviors and control sharing strategies in order to customize to
a user’s physical abilities and personal preferences. The next step in the devel-
opment of our software architecture thus will be to complete the development of
and evaluate the adaptation modules.

The experimental work presented in this paper has provided the foundation
and proof-of-concept for the technical components of our proposed modular and
adaptive wheelchair robot. Our system prioritizes simple integration with ex-
isting commercial chairs and control interfaces, to mitigate costs not covered
by insurance and thus accelerate adoption by users. Furthermore, our system
is distinguished by its focus on customization to the user, via the selection and
adaptation of a unique set of autonomy behaviors and control sharing strate-
gies. The system has been evaluated within multiple environmental scenarios
and shown good performance. The technical components are of course only one
half of the story, and our future work will evaluate the operation of this system
by limited-mobility users at the Rehabilitation Institute of Chicago—the #1
ranked rehabilitation hospital in the United States.

Acknowledgments. Many thanks to Matthew Derry for his significant contri-
butions to the development of the software infrastructure for this system.
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