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Trust Adaptation Leads to Lower Control Effort in
Shared Control of Crane Automation
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Abstract—We present a shared-control framework predicated
on a measure of trust in the operator, that is calculated automat-
ically based on the quality of the interactions between a human
and autonomous system. This measure of trust is built upon a
control-theoretic foundation that rewards stable operation of the
system to give more trusted users additional control authority.
The level of control authority is used to modify the human
input, and as a result, we observe a minimization of the required
effort of the controller. We validate this work within a planar
crane environment with a receding horizon controller to assist
with the regulation of the system dynamics. The human defines
the reference trajectory for the controller. In an experimental
study users navigate a suspended payload through a set of maze
configurations. We find that adaptation of the trust metric over
time provides the benefit of substantially (p < 0.01) improving the
automated system’s ability to modulate the user’s input, resulting
in stable reference trajectories that require less effort to track.
In effect, the human and automation spend less time fighting
each other during task execution, suggesting that the automated
system and user each have a better understanding of the other’s
ability.

Index Terms—Human Factors and Human-in-the-Loop; Phys-
ically Assistive Devices; Control Architectures and Programming

I. INTRODUCTION

THE increasing pervasiveness, capabilities and complex-
ity of autonomous robots in human environments has

highlighted the need for more sophisticated control-sharing
techniques that allow humans to interact with, control and
shape the behaviors of these systems, while also maintaining
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a high level of safety. Shared control enables a human and
autonomous system to simultaneously control a system. As
such, control sharing can create a system that leverages the
strengths of each source of control while reducing the effects
of the weaknesses. For instance, in the automotive domain
shared-control systems have contributed to safer driving by
autonomously identifying and correcting common control
mistakes made by humans [1]. Shared control research has
accordingly seen a recent surge in interest and utility in areas
ranging from rehabilitation and assistive robotics [2], [3], to
search and rescue [4], [5], to transportation [6], [7].

Of particular importance to consider when developing these
control-sharing techniques is that systems exhibiting signif-
icant dynamics are difficult for humans to control. Human
operators often cope with complex dynamics by sufficiently
constraining the system to minimize the effect of the dynamics,
for example a crane operator moving a payload very slowly.
Alternatively, some form of automated assistance can help to
mask the dynamics from the human, for example the unique
shape of the JAS-39 airplane [8] creates aerodynamics that are
uncontrollable by a human alone, thus significant automated
assistance from the flight computer is added to stabilize the
aircraft.

Our take on control sharing is to combine the relative
advantages of the human and robot partners. In this work,
we consider that automation and optimal control techniques
are good at controlling highly dynamic systems, but require a
reference trajectory to try to stabilize to. While these reference
trajectories could come from automated path planners, engag-
ing a human partner has the advantage of using the exceptional
perceptual capabilities and situational awareness of humans to
operate in dynamic environments. The key is for the human
to provide reference trajectories that the automated controller
can track.

In this work, one of the primary goals is to maximize
stability in complex dynamic systems while taking advantage
of humans’ perceptual and cognitive adaptability. Towards that
end, we develop a human-in-the-loop control framework that
reasons explicitly about the amount of control authority that
should be allocated to the human based on the trust that the
autonomous system has in the operator. The purpose of this
trust metric is to allow the system to learn how able a user is
in providing reference trajectories that can be easily tracked
by the automated controller. The adaptive trust metric can then
be used to develop a more stable shared-control system. Our
approach is novel in that we characterize interactions between
the human and autonomous system within the framework of
control theory in order to build this formalized notion of
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trust, with which the autonomous system can modulate control
authority.

The proposed shared-control framework is validated on a
simulated planar crane robot platform in which a human
operator is tasked with maneuvering a payload through a
maze to different target locations. This platform provides
a simulation that approximates a real-world, cyber-physical
system problem that exhibits significant system dynamics. In
analyzing our approach, we place particular importance on
how well the system is able to learn and modulate control
authority to a human based on their ability to provide suitable
reference trajectories, as this has a direct effect on the stability
of the system.

The remainder of this paper is structured as follows: Sec-
tion II reviews related literature in shared control and the
foundation of optimal control theory that this proposed work
is built upon. Section III presents our proposed trust formu-
lation, and Section IV describes the implementation of our
experimental platform and details of the experiment, followed
by results and discussion in Section V and conclusions in
Section VI.

II. BACKGROUND AND RELATED WORK

This section provides a brief review of shared-control and
the role that trust has played in shared control frameworks.
Additionally, the foundation for the receding horizon optimal
controller used in this work is presented.

A. Shared Control

An important question for any shared-control system is how
best to allocate control authority to maximize the effectiveness
of the human-robot team [9]. One approach is to predefine
control authority allocations that can be switched in a discrete
way in response to some action or input [2]. Alternatively,
control authority can be assigned on a continuum such that
the granting or retracting of control authority is smooth [6],
[10].

Shared control has been used within the field of assistive
and rehabilitation robotics to introduce automation to the task
of aiding individuals with impairments to control assistive
machines [3], [11]. In search and rescue, the shared control
may happen at the task level where a human instructs a team
of robots to carry out a search task, while leaving lower level
control and planning to the robots [12].

Within the shared-control literature, a subset of works model
trust in an effort to improve human-robot team performance
[13], [14], [15]. In these works, the formulation of trust
represents the trust that the human has in the autonomous
system, so that the automated system can use the model
to choose actions to maximize trust [16]. Additionally, trust
has been studied in the context of robot-robot teams [14].
Our proposed system is differentiated in that we are instead
proposing a formulation of trust that represents the trust that
the autonomous system has in the operator. This trust is then
used to allocate control authority in an effort to maximize
stability of the full system.

B. Receding-Horizon Optimal Control

In this work, the user’s primary mode of interaction with
the dynamic system is by defining reference trajectories for
the automated controller to attempt to follow. The automated
controller uses a discrete-time, receding-horizon, nonlinear
optimization procedure to calculate controls to stabilize to
the user-defined reference trajectory. The receding-horizon
controller (RHC) is a type of Model Predictive Control [17]
in which cost is minimized over a short time horizon. Our
chosen methodology is based on an online projection-based
trajectory optimization technique originally presented in [18].
This technique was later made interactive by adapting the RHC
to discrete-time systems [19], and eventually reformulating it
as a real-time, receding horizon procedure [20] that was used
to experimentally stabilize the physical version of the planar
crane system used in this work. Other methods are similarly
capable of solving the presented optimization problem (e.g.
[21], [22], [23]), however, the described approach was chosen
because it provides both an optimal control and a feedback
law, increasing the stability of the resulting receding horizon
controller. Additionally, the trajectory optimization technique
used is general such that it can be applied to different robots
with relatively little effort.

In a general receding horizon control algorithm, at every
timestep k a discrete-time trajectory optimization problem is
solved over a reference trajectory defined over the next N
timesteps. The optimization routine only has ∆t = tk+1 − tk
seconds to achieve convergence and produce a control signal
for the present timestep, before a new measurement is taken
and the procedure must begin again for the next timestep. One
of the primary features of the particular algorithm utilized
herein is that it produces a dynamically feasible system
trajectory after every iteration. So even if ∆t seconds does
not provide sufficient computation time to achieve full con-
vergence, as long as there is time to take a single step, the
algorithm is still capable of producing system controls.

In this work, at timestep k the reference trajectory for the
receding optimization is given by

ξ̄ref, k = (xref, k, uref, k)

=
(
{xref (i)}k+Ni=k , {uref (i)}k+N−1i=k

)
over the horizon tref, k = {tref (i) = i∆t | i = k..k + N}
where the reference state xref, k and reference input uref, k do
not necessarily satisfy the system dynamics. The optimization
problem statement at time k is then

ξ∗k = arg min
ξk∈T

J(ξk, k)

J(ξk) =
k+N−1∑
i=k

l(x(i), u(i), i) +m(x(k +N))

where ξ is used to indicate N -length sequences of both state
x and input u, and T is the set of dynamically admissible
states and input trajectories over the tref, k time horizon. The
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running cost Lagrangian l(·) and the terminal cost m(·) are
given by

l (x(k), u(k), k) =
1

2
(x(k)− xref (k))ᵀQ(x(k)− xref (k))+

1

2
(u(k)− uref (k))ᵀR(u(k)− uref (k))

and

m(x(N)) =
1

2
(x(N)− xref (N))ᵀP1(x(N)− xref (N))

where Q, R, and P1 are positive semidefinite, symmetric
weighting matrices [24].

This optimization algorithm is an iterative, indirect optimal
control algorithm with simultaneous variations of state and
control at each iteration. As with many iterative optimization
algorithms, it is guaranteed to converge to a local minimum,
but has no guarantees on finding a global optimizer. Both first
and second order decent directions are found by minimizing
a local quadratic model. Once a descent direction is found,
a step size is found to satisfy a sufficient decrease condition,
and then the scaled descent direction is added to the current
iterate. When the descent direction is added to the current
iterate, the state-control trajectory pair no longer satisfies the
system dynamics. The projection operator maps this infeasible
system trajectory back to the system’s trajectory manifold
while maintaining convergence guarantees.

Important to note about this framework is that for a given
timestep size, ∆t, we only allow the optimization to run for up
to ∆t seconds. Since this computation takes a finite amount
of time, the horizon for the optimizations are actually one
timestep ahead of real-world time. This way the optimization
will have completed by the time its result is needed for sending
controls to the system. As a final point, note that the reference
trajectory must be defined for at least N∆t seconds into the
future. The consequence is that the system always operates
with N∆t seconds of time delay from the user-provided
reference.

III. FORMULATION OF TRUST

In order to define, adapt and make use of a formal notion of
trust, our proposed framework consists of two steps, evaluation
of user input and control modulation. In the evaluation of
user input, a trust metric is calculated as a function of the
deviation from the reference trajectory. The control modulation
step then uses the trust metric to allocate control authority.
This approach allows us to asses and improve the system’s
understanding of the user’s abilities.

A. Evaluation of User Input

After each interaction with the system, a trust metric is
calculated using tools provided by optimal control theory. We
take a control-theoretic viewpoint in which we use the devia-
tion of the executed trajectory from the reference trajectory, as
this measure indicates how well the receding horizon controller
is able to track the user input. For a given trial i we calculate a
deviation metric δ. The deviation from the reference trajectory
can be captured by the Fréchet distance [25] between the

executed and desired trajectories. To compute this metric in
real time, we use a discrete variation of the Fréchet distance
[26],

δi(f, g) = inf
α,β

max
t∈[0,1]

d(f(α(t)), g(β(t))) (1)

where f : [a, b] → V and a, b ∈ <, is the reference
trajectory and g : [a′, b′] → V and a′, b′ ∈ <, is the
control trajectory and (V, d) is a metric space. α and β are
continuous nondecreasing functions that map from [0, 1] onto
[a, b] and [a′, b′], respectively. inf is the infinum, or greatest
lower bound. We use the Fréchet distance to compute the
deviation between the executed and desired trajectories as this
measure accounts for the velocity and ordering of points along
each curve, a property not shared by similar metrics such
as the Hausdorff distance [27], which computes the distance
between two geometries without explicitly considering the
paths as time-based trajectories. Additionally, as mentioned,
the discrete measure can be computed in real time which
is important both for our experiments and for any resulting
interactive system.

It should be noted that while we focus on the deviation from
the reference trajectory in this work, there are other control-
theoretic measures of performance that could be interesting.
Measures such as distance from the basin of attraction of
the receding horizon controller could be incorporated into the
calculation of δ.

We define the trust metric to decrease as the deviation δ
increases. To calculate the trust metric τi at trial i, we repre-
sent the distribution of deviations as a Gaussian distribution,
δ ∼ N(µ, σ2), where µ and σ2 are the mean and variance of
an individual’s deviation history. We then update the previous
trust metric τi−1 by computing the probability P of δi

τi = τi−1 + γ ·P{δ = δi} (2)

where γ is a learning rate that determines how quickly the
trust decays with performance, and 0.1 ≤ τ ≤ 1.

This Gaussian distribution represents the system’s knowl-
edge of the user, and is iteratively updated after each trial.
Intuitively, if there is a large deviation from the desired tra-
jectory, then τi should be low—because the user is providing
reference trajectories that are difficult for the controller to
track, which reduces the overall robustness of the system.
We use a Gaussian distribution to represent the system’s
knowledge of the user as it provides a probabilistic method
for weighting updates to the trust metric that places a larger
emphasis on greater deviations and reduces the effect of
smaller changes in deviation history. Additionally, as the
distribution is parameterized by an individual user’s history,
we can recognize significant changes in the performance as
either personal learning or a failure to understand the system.

B. Modulation of User Input via Trust

The proposed framework uses trust to allocate control
authority. This approach is motivated by the fact that the
human might be poor at accounting for the system dynamics
in the low-level controls, but by using the learned trust level
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Fig. 1. Definition of the system configuration variables xm, ym, xr and
l. The delay between user input (yellow line) and execution (blue line) is
approximately 1 second.

we can regulate the human’s input to produce stable reference
trajectories that require little effort to track.

Modulation of the user’s input is realized through a com-
bination of a low-pass filter and scaling the input speed. By
removing the high-frequency content from the input signal, the
receding horizon controller is better able to track the reference
trajectory. Similarly, by scaling the input speed, users are
better able to control for momentary mistakes that can lead
to challenging reference trajectories. It is important to note
that these transformations can adversely affect more typical
task performance measures such as time to completion, but
this is a trade-off for system stability.

Trust modulates the cutoff frequency of the low-pass filter
ω according to

ω = (ωmax − ωmin) · (τi)λ + ωmin (3)

where ωmin is the minimum cutoff frequency that still allows
the user to complete the task, ωmax is the maximum frequency
that contains control information in the input signal, λ is
a parameter that shapes the steepness and direction of the
function, and τi is the user trust from Equation (2).

Trust also influences the magnitude of the human’s input,
according to

ṽi = τi · vi (4)

where ṽi is the tempered 2D system velocity and vi is the 2D
input velocity.

As trust in the operator input increases, the user is given
greater command bandwidth—with the expectation that skilled
users generate high frequency inputs only when appropriate
and feasible for the controller to track, whereas with novice
users the high frequency signals tend to be overshoot or
corrective movements.

IV. EXPERIMENT DESIGN

Our trust-based shared-autonomy framework is demon-
strated on a simulated planar crane system, in which an
overhead robot with a winch has a mass suspended by a string.
The dynamic simulation and optimal control calculations for

the planar crane system are completely done in the open-
source Python module trep1 [28], which has been used for
a variety of real-time optimal control and estimation problems
ranging in complexity from a single degree-of-freedom (DOF)
pendulum up to a 40-DOF marionette [29], [30]. One of
trep’s strengths is its integration with the Robot Operating
System (ROS). Trep’s ability for real-time optimal control
calculations, combined with ROS’s ability to interface with
hardware and share code, result in a software package that
enables shared-control research.

The experiment was run on a Core i7 laptop with 8 GBs
of RAM. The winch was initialized at the same location in
each experiment (red circle in Fig. 2). The operator used the
joystick of a Sony Playstation 3 (PS3) controller to provide
the desired trajectory (or reference trajectory), which refers
to the ordered set of target positions (yellow line in Fig. 2).
As the user moves the target position (green circle in Fig. 2)
through the environment, we maintain the desired position and
velocity associated with each timestep.

A. Experimental System

The overhead robot is constrained to motion in a single
dimension, moving only along the x-axis, and a pulley con-
trols the length of the string. The resulting system has four
configuration variables: horizontal position of the mass xm,
vertical position of the mass ym, horizontal position of the
robot xr, and the length of the string l. The vertical position
of the robot is fixed. Fig. 1 illustrates the coordinate system
and configuration variables. Our model of the system assumes
that the horizontal position of the robot xr and the length
of the string l can be treated as kinematic inputs [29], [31].
With this assumption the Lagrangian for the system is only a
function of the dynamic configuration variables xm and ym,
and it is given by

L(q, q̇) =
1

2
m(ẋ2m + ẏ2m)−mg yr (5)

1trep is available at http://nxr.northwestern.edu/trep

Fig. 2. Example maze environments for the simulated planar crane task,
showing initial position (red circle), target position (green circle), current
position of the user input (yellow circle), reference trajectory (yellow line),
executed trajectory (blue line), suspended mass (white circle), and maze walls
(black). A robotic winch (grey) manipulates the location and length of the
string supporting the payload.
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Fig. 3. Robot (red) and suspended mass (blue) position versus mass position
along the x-axis during direct control. Note the pendular dynamics of the
system when the user does not attempt to issue controls that account for the
system dynamics.

where m is the mass of the payload and g is the acceleration
due to gravity. A holonomic constraint enforces compatibility
between the robot’s kinematically-controlled horizontal po-
sition and string length and the two dynamic configuration
variables. In continuous time, this results in a system with an
eight-dimensional state vector defined below

X(t) = [xm(t), ym(t), xr(t), l(t), ẋm(t), ẏm(t), ẋr(t), l̇(t)]
T

and a two-dimensional input vector

U(k) = [ẍ(t), l̈(t)]T

comprised of accelerations of the robot position and string
length. To discretize this system and obtain the discrete-
time controller, we use variational integrators to represent the
discrete-time system [28], [29].

We choose this system because it provides dynamics that
are difficult for a human to control, while allowing for the
definition of dynamic tasks that are representative of tasks for
which control sharing would be beneficial. Fig. 3 illustrates
what can happen when a human controls the robot position
and winch speeds directly, without aid from the autonomy. In
this case, the position of the mass along the x-axis oscillates
considerably due to the pendulum-like dynamics of the system.
Though the humans control inputs are uncomplicated (red
line), the resulting dynamics are unaccounted for, as evidenced
by the oscillation in the positional error of the suspended mass
position over time (blue line).

B. Experimental Task

Inspired by a task that is currently part of real crane
operator certification tests, we implement a maze navigation
task within our simulated planar crane environment (Fig. 2). In
the certification test task, the operator must negotiate a zigzag
corridor with a payload [32]. Our task presents users with a
target location within a maze, with walls arranged such that the
path to the target is highly constrained. The task is complete
once the mass dwells within the target location for 0.5 seconds.

We test three different task configurations of increasing dif-
ficulty (Fig. 2). First, a low difficulty configuration where the
total path length is short, requires few turns (∼3) and the maze
hallways are wide. Then, a medium difficulty configuration

where the total path length is longer, requires more turns
(∼5) and the maze hallways are an average of 60% as wide
as the low difficulty configuration. Finally, a high difficulty
configuration where the total path length is long, includes
many turns (∼10) and the maze hallways are an average of
50% as wide as the low difficulty configuration. A total of 21
(8 low difficulty, 8 medium difficulty and 5 high difficulty)
unique mazes are used in this experiment.

C. Autonomous Control

The automated control uses a receding-horizon controller
which controls xr and l to track a reference trajectory. The
human specifies the desired reference trajectory with respect to
the position of the mass xm and ym. A full reference trajectory
actually consists of defining the complete position, velocity
and momentum of the system at each time step, so, our
simplifying assumptions set the velocity and momentum for
both the robot and the suspended mass to zero. The variables
xr and l are calculated using a simple inverse kinematic
solution that does not account for mass swing, where xr = xm
and l = yr − ym. While this is not a feasible trajectory itself,
the receding horizon controller does a good job of tracking
the user input variables xm and ym.

Unlike trajectory optimization techniques which usually
require the entire trajectory prior to generating the optimal
trajectory, the receding horizon controller optimizes the trajec-
tory within the window of the receding horizon. This enables
online control of the system by a user. This interactivity comes
at the cost of not having a global optimal trajectory, due to
an inability to look ahead along the trajectory over the entire
time period. Consequently, if the receding horizon window is
set too small, the controller is unable to account for enough of
the system dynamics and does not perform well. Alternatively,
if the window is set too large, the optimization can take too
long to run in real time. We found that for this system the
range of window sizes that work well is between 5 and 20
time steps (approximately 0.5 to 2 seconds). For all of our
experiments, we use a window size of 10, meaning there is
a delay of about one second between user input and system
response (Fig. 1).

We tune the optimization parameters (Q, R and P1) such
that much higher weights are placed on having the mass
follow the reference configuration. That is, the diagonal terms
corresponding to xm and ym had much higher weights than
any other entries. N was chosen to be high enough as to
achieve good performance, and low enough as to allow the
optimization to reliably fully converge in δt seconds.2 These
weights also are the same as the tuned weights for the real-
world experimental system [20].

D. Trust Computation

In order to determine the appropriate range of low-pass filter
cutoff frequencies to map to trust, we performed a Fourier
analysis of user input that contained high and low frequency

2Optimization parameter values : Q = diag([20, 20, 0.1, 0.1, 0.1, 0.1,
0.25, 0.25]), R = diag([0.1, 0.1]), P1 = Q, δt = 0.1 (10 Hz), N = 10 (with 10
timesteps, each RHC window considers a 1-second horizon).
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Fig. 4. Fourier analysis of the user input along the x axis (blue) and along
the y axis (red). The majority of the signal content of the user input happens
below 0.2 Hz. Above 2.5 Hz there is almost no signal content (not visualized).

movements. Fig. 4 shows the analysis which highlights that
nearly all of the control information exists in the 0.1 to 2.5 Hz
bandwidth. Thus the range of our cutoff frequency for the low-
pass, 4th-order Butterworth filter is from 0.1 to 3.0 Hz, where
0.1 Hz maps to zero trust in the user input and 3.0 Hz maps
to full trust.

From the Fourier analysis, we see that the control content
decreases monotonically. To distribute the capabilities of the
user uniformly over the trust range, we use Equation (3) to map
trust to cutoff frequency ω with ωmax = 3.0, ωmin = 0.1, and
λ = 3. The intuition behind this is to require large changes
in trust for small changes in cutoff frequency when between
ωmin and ωmax.

E. Experimental Protocol

Twenty-two users were recruited from the Northwestern
University community.3 Users were randomly grouped into
two cohorts:

• Static: The trust level was held static after the initial
training period.

• Adaptive: The trust level evolved throughout the experi-
mental procedure.

Each experiment assumed the following protocol:

• Initialization: Three trials of shared control with fixed
trust values on the low-difficulty maze task. Each trial
was initialized to one of the (low 0.1, middle 0.5 or high
1.0) fixed trust values, and after each trial the trust was
updated according to Equation 2. The presentation order
(of which fixed trust value) was random and balanced
across subjects.

• Low: Five trials of shared-control on the low-difficulty
maze task. Trust was initialized in the first trial to the
average of the three updated trust values from the initial-
ization phase, for both cohorts. Trust was then held fixed
for cohort static, and updated according to Equation 2
after each trial for cohort adaptive.

3Two participants were removed from the study before analysis due to a
poor understanding of the task requirements. On average, users completed
11.7 of the 15 test trials. The two removed users completed one trial each.

• Medium: Five trials of shared-control on the medium-
difficulty maze task. Trust for the adaptive cohort was
initialized to the final value updated in phase Low. Trust
for the static cohort remained fixed.

• High: Five trials of shared-control on the high-difficulty
maze task. Trust for the adaptive cohort was initialized
to the final value updated in phase Medium. Trust for the
static cohort remained fixed.

Each experiment additionally included five trials of direct
control on the low-difficulty maze, for a total of 23 trials.

V. RESULTS AND DISCUSSION

The validation of the proposed formulation consists of an
analysis of the system’s understanding of, and faculty in
accounting for, user specific abilities to provide references tra-
jectories that can be easily tracked by the automated controller.
One premise underlying this formulation of trust is that the
system should be able to learn from an individual user’s inputs
and leverage this information to modulate the control authority
afforded to that user. In our formulation, the goal of the system
is to modulate the user input to produce stable references
trajectories as defined by a minimization of control effort.
We compute the controller effort as the magnitude of the two
dimensional control vector, u(t). This vector is comprised of
the finite-differenced velocity of the robot’s horizontal position
and the finite-differenced velocity of the string length. We
compute the magnitude at each time step using the Euclidean
norm. The average controller effort over the course of an entire
trial is defined as

U =

N∑
t=0
‖u(t)‖

N
(6)

where t is time, and N is the final time-step in a given
trajectory. Therefore, larger controller effort indicates that the
controller is experiencing some combination of increased error
from the reference trajectory and increased input effort. Either
scenario indicates that the automated controller has had to
work harder to track the reference trajectory.

In this work, we evaluate the performance of the operator
on a given task entirely through an analysis of the average
required controller magnitude. There are other possible mea-
sures including task-specific metrics like number of collisions;
however, we chose average controller magnitude as our sole
performance metric as it is task-agnostic and will generalize
to other applications in which a user provides a reference
trajectory.

A. Adaptive vs. Static Trust

Here we analyze the system’s ability to modulate a user’s
trust metric to produce stable reference trajectories. We per-
form a statistical analysis comparing the average controller
magnitude, U, between the adaptive and static trust cohorts in
each maze configuration. All statistical analysis is done using
a two-tailed Student’s t-test. In both the static (p < 0.01)
and adaptive (p < 0.01) trust cohorts, we see a statistically
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Fig. 5. Average controller magnitude (U) per maze configuration for the static
(green) and adaptive (blue) trust cohorts. We see a significant (p < 0.01)
decrease in average controller magnitude between the initial maze configu-
ration (low difficulty) and the final maze configuration (high difficulty) in
both cohorts. We also see that the adaptive cohort requires a significantly
(p < 0.01) diminished average controller magnitude than the static cohort
in the final maze configuration. We do not see this difference in either the
low or medium difficulty maze configuration which demonstrates that the rate
of learning is significantly accelerated in the adaptive trust cohort. Key : *
p < 0.05 and ** p < 0.01.

significant decrease in the average controller magnitude re-
quired to track the user’s reference trajectory in the final
maze configuration when compared with the initial maze
configuration. This suggests that users in both cohorts are able
to learn pertinent aspects of the system dynamics and how to
provide stable reference trajectories from the viewpoint of the
automated controller.

We also find (Fig. 5) a statistically significant difference
between the average controller magnitude, U, required to
track reference trajectories provided by users in the static
trust cohort versus those in the adaptive trust cohort, in
the final maze configuration (p < 0.01). As we see no
statistical evidence that one cohort outperforms the other in the
first two maze configurations, we can infer that the adaptive
trust formulation allows the system to adapt to the (possibly
changing) abilities of the user, and so modulates the user input
to provide reference trajectories that require less effort for
the controller to stabilize to—regardless of the abilities of the
individual user.

B. Average Controller Magnitude in Adaptive Trust Cohort

A more detailed analysis of how trust evolves in the adaptive
trust cohort can be seen in Fig. 6. This plot presents prelimi-
nary results4 that further suggest the controller is adapting to
the abilities of the user, resulting in reference trajectories that
require less effort to track. This plot breaks down the evolution
of required controller effort over the course of the experiment
based on users who finished the study with higher trust (red)
than they began with, and those who finished the study with
lower trust (blue).

This plot shows that in cases where the automated system
thinks the person can handle more trust, which corresponds

4We say preliminary results because this test included only the members
of the adaptive trust cohort, and divides them into two groups (consisting of
7 (red, Fig. 6) and 3 (blue, Fig. 6) subjects), and therefore provided a smaller
sample size from which we draw conclusions.

Fig. 6. Evolution of the average controller magnitude (U) per trial. The data
are divided into those subjects whose final trust value was higher (red) versus
lower (blue) than the initial trust value. Mean (line) and standard deviation
(variance envelope) are presented. We see a significant decrease in the required
average controller magnitude both in users whose final trust value was lower
(p < 0.01) and in users whose final trust value was higher (p < 0.05)
than their initial value. This demonstrates that the results hold regardless of
whether the initial control authority allocation is an over- or under-estimate
of the user’s expertise.

Fig. 7. Evolution of trust over the course of the experiment (15 trials). Each
line represents a single user in the adaptive trust cohort. No single pattern
emerges, suggesting that the adaptive trust metric based on user performance
is the causal variable in reducing the required average controller magnitude
of the shared control system.

with the user being given greater control bandwidth, there
is a reduction in average control magnitude (p < 0.05).
Additionally, when the system thinks the person requires less
trust, which corresponds to lower control bandwidth, and we
also see a reduction in average control magnitude (p < 0.01).
This demonstrates that the results are not due to a specific
modulation of the user input (e.g. saturation of the execution
speed) as our hypothesis holds true whether the user sees an
improvement or decline in their abilities to solve the maze
task. That is, when the system’s trust is adaptive, the operator
is able to produce reference trajectories that require less effort
to track than when the system’s trust is static.

C. Trust Metric Over Time

Additionally, we find no single trend in the evolution of
the trust values that produce the trend of decreasing average
controller magnitude (Fig. 7). This helps elucidate the point
that it is not simply an increase or decrease in the trust metric
that allows a user to produce superior reference trajectories.
Rather, from the standpoint of the automated controller, it is
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a combination of user performance, system learning and the
adaptive trust level, which produces this trend.

VI. CONCLUSION AND FUTURE WORK

This work has presented a trust-based shared-control frame-
work that utilizes a control-theoretic measure of trust that
an automated controller has in the operator. Results show
that an adaptive trust metric, based on our control-theoretic
formulation, was able to improve the ability of the shared-
control system to produce reference trajectories that require
significantly (p < 0.01) less effort for the controller to
track than those provided by users with a static trust metric.
The reduced average controller magnitude, U, reflects the
system’s ability to learn appropriate methods for modulating
the operator’s input, resulting in reference trajectories that are
easier to track. This work creates a foundation upon which
to expand the trust-based shared control framework to include
the online, continuous adaptation of trust, more granular user
skill level classification, as well as applications to additional
tasks and robot platforms.
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