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Abstract— Shared human-robot control for assistive ma-
chines can improve the independence of individuals with motor
impairments. Monitoring elevated levels of workload can enable
the assistive autonomy to adjust the control sharing in an assist-
as-needed way, to achieve a balance between user fatigue, stress,
and independent control. In this work, we aim to investigate
how heart rate variability features can be utilized to monitor
elevated levels of mental workload while operating a powered
wheelchair, and how that utilization might vary under different
control interfaces. To that end, we conduct a 22 person study
with three commercial interfaces. Our results show that the
validity and reliability of using the ultra-short-term heart-
rate variability features as predictors of workload indeed are
affected by the type of interface in use.

I. INTRODUCTION

Assistive machines such as powered-wheelchairs can in-
crease the independence and quality of life for persons
living with motor impairments. When a person is fitted
for a powered wheelchair, the seating clinician will take
their unique constraints and abilities into consideration when
choosing the control interface they will use for operating
their machine. The selected control interface can affect not
only how the person operates their machine, but also what
challenges they may face [1].

Incorporating robotics autonomy within assistive machines
can improve human autonomy by collaborating with the
human user to ensure safety and relieve physical and cogni-
tive burden. The robotics autonomy operates by observing
the external world and the user through sensors such as
cameras or range sensors mounted on the assistive machine.
Each person is distinct in their abilities and experiences and
accordingly requires unique amounts and types of assistance.
Therefore, robotics autonomy should vary how and when it
steps in to assist based on the observations made about the
world and the user, and knowledge it has about the user’s
individual preferences.

One measure with potential for use as an implicit cue
for when the autonomy should step in is mental workload.
Mental workload is defined in multiple ways due to the
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diverse perspectives investigating this phenomenon and, sub-
sequently, various measurement formalisms are proposed [2].
Studies in various domains show that heart-rate variability
(HRV) correlates with cognitive workload [3], [4]. However,
the majority of this work studies tasks that last more than
five minutes and often during rigorous physical activity,
while many wheelchair driving tasks occur on much smaller
time-scales and the only physical activity of the user is the
operation of the control interface.

Using HRV as a measure of cognitive load requires the use
of physiological sensors to continuously monitor the state of
the user. Although wireless electrocardiogram (ECG) sensors
are now commercially available, there are still challenges
with using these sensors to measure HRV during activities
of daily living: (1) the sensors need to be placed at precise
locations on the body, (2) the sensors typically only last for a
few hours of constant use and need to be recharged, (3) sweat
and sensor displacement can negatively affect the accuracy
of the sensor readings, and (4) conductive gel is typically
required for improved sensor readings which if dried can
also negatively affect the accuracy of measured signals.

The long term aim of this work is to design robotics
autonomy that is able to discern changes in the user’s
cognitive demand from features of their control input sig-
nal. Commercially available interfaces fall into three broad
categories: joysticks, headrest switches, and sip/puff straws.
These machines can be operated in various ways—including
hand motion, head tap, or respiration—which may result in
different sensor readings from physiological sensors while
navigating the same environment. How this variation affects
HRV workload calculations has yet to be explored and is the
aim of this paper. Furthermore, the signals generated through
these interfaces have different characteristics in terms of
proportionality, dimensionality, and continuity of the signal,
to name a few, which might affect how the user input signal
correlates with the HRV signals.

To accomplish our larger goal we first need to establish
an online ground-truth measure of workload—as opposed
to episodic measures, such as the NASA-TLX [5]. As a
first step towards our larger goal we provide the following
contributions:

1) Identify whether ultra-short-term (UST) HRV features
can accurately predict cognitive load during wheelchair
navigation.

2) Identify whether UST HRV features are impacted by
the type of control interface used.

3) Identify how the workload prediction accuracy of UST
HRV features are affected by the spread and density
signals as a direct result of interface selection.



II. BACKGROUND

In this section, we will summarise relevant prior work.

A. Cognitive Load

Various definitions of mental workload exist in the litera-
ture without a clear consensus. Tao et. al. [6] distinguishes
between metal workload, physical workload, and task load.
They assert that mental workload (MWL) conveys stresses
resulting from task demands which reflect an individual’s
subjective experience performing a task given external con-
ditions and constraints. This is contrasted to the physical
workload that results from stresses on the human’s physical
body, and to task load that signifies the amount of work an
individual must perform. In this work, we follow the defini-
tion put forward by Young and Stanton which suggested that
MWL refers to “the level of attentional resources required
to meet both objective and subjective performance criteria,
which may be mediated by task demands, external support
and past experience” [7].

A review article by Charles et al. [2] perform a meta
analysis over all common physiological measures of work-
load. Their results find that there is no universal solution for
measuring mental workload and no single stand-out method
is recommended. However, they also find that physiological
sensors are able to capture the experience of the user during
different tasks, and contrast this to subjective measures which
can be influenced by how the individual perceives their own
performance. Giannakakis et al. [8] develop a stress recogni-
tion system using HRV that accurately classifies stressful and
non-stressful scenarios under a variety of stressors, including
under cognitive load while performing the Stroop Color
Word Task. Ultra short-term HRV measures also are used to
identify mental stress in students during an academic exam
[3]. In another study, mental workload, as measured by the
visual analog scale of fatigue and the NASA TLX score, is
shown to alter HRV during an hour-long letter recognition
task [9].

B. Heart Rate Variability

HRV measures the variation in time intervals between
adjacent heartbeats and is considered to be an index for
neurocardiac function [10]. This variation arises from the
complex dynamics between heart-brain interactions and non-
linear autonomic nervous system processes. Interdependent
regulatory mechanisms such as (but not limited to) auto-
nomic balance, blood pressure, gas exchange, and vascular
tone all contribute to HRV, but operate on different time
scales, hence the need for different HRV measures. As these
regulatory mechanisms are employed when we adapt to en-
vironmental and psychological challenges, HRV can help us
to index an individual’s mental workload [11]. For instance,
higher levels of resting vagally-mediated HRV are linked
to the performance of executive functions like attention and
emotional processing by the prefrontal cortex [10].

A variety of HRV metrics exist to probe at different mech-
anisms that underlie HRV. Time domain metrics measure
the time variation between consecutive heartbeats. Many
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Fig. 1: Control interfaces used in the study: (a) 3-axis
joystick, (b) headarray device, and (c) sip/puff switch.

Fig. 2: Wearable sensor used in this study. The BioStamp RC
sensor can be configured to measure ECG, EEG, accelerom-
eter and gyroscope signals. The sensor was placed in the
Lead I configuration.

metrics drop abnormal heartbeats, deriving metrics only
from the normal-to-normal heartbeat intervals (NN intervals).
Frequency domain metrics estimate the absolute or relative
power in a certain frequency band. Non-linear and entropy
metrics quantify the regularity and complexity of successive
heartbeat intervals [11].

C. Workload Monitoring for Robotics Autonomy

A variety of assistive robotic wheelchairs are proposed
and shown to reduce the workload and cognitive burden of
wheelchair drivers [12] using post-task subjective measures
of workload. Although the knowledge that the assistance can
reduce workload post-hoc is important, the assistance can
be more beneficial if it can implicitly track the workload
of the user online, and only step in when the workload
exceeds an acceptable threshold. Towards this, Lamti et al.
extract features from electroencephalogram sensor signals
that model mental fatigue [13]. To our knowledge there is
no study that models workload using HRV features during
powered wheelchair navigation, and moreover with various
interfaces.

III. MATERIALS AND METHODS

This section provides a detailed description of the research
design and procedures used in the experiment.

A. Hardware

The study was conducted using a Permobil (Timrå, Swe-
den) powered wheelchair equipped with an on-board com-
puter, two RGB-D sensors, and wheel encoders. Three of
the most common interfaces used for controlling powered
wheelchairs were included in the study [14]. The selection
used in this study were (1) an ASL 533 Compact joystick
(ASL, Texas, USA), (2) 105 electronic headarray system
(ASL, Texas, USA), and (3) sip/puff switch (Origin Instru-
ments, Texas, USA) as shown in Fig. 1. We used BioStamp



Fig. 3: Wheelchair navigation track. Tasks include doorway
traversal, ramp descent and ascent, drop-off avoidance, and
dynamic obstacle avoidance.

RC sensors (MC10, MA, USA) to measure electrocardio-
gram (ECG) and accelerometer signals. The ECG sensor was
attached in the LEAD I orientation as shown in Fig. 2 and
signals were measured at a frequency of 250Hz.

B. Participants

We recruited 23 participants: 9 with spinal cord injury
(SCI) (41.6 ± 13.9 years, levels C3-C6, complete and in-
complete) and 14 without injury (31.6 ± 9.1). One of the
uninjured subjects was excluded from the analysis due to
excessive noise in the sensor signal. The experiment was
approved by the Northwestern University Institutional Re-
view Board and informed consent was obtained from all
participants. A questionnaire screened subjects for alcohol
and coffee consumption, exercise prior to the study session,
and smoking habits.

C. Experimental Procedure

The study consisted of three sessions—one session per
interface. The uninjured subjects took part in all three study
sessions, while the SCI subjects only used the interfaces they
were able to safely control. Each session began by measuring
the baseline HRV of the participant at rest, followed by
a training phase where participants were familiarized with
the operation of the specific interface and the wheelchair
dynamics. This was followed by the testing phase which
involved wheelchair navigation through a track with seven
tasks: two doorway traversals, ramp ascent and descent,
avoiding a dynamic obstacle, and traversing a sidewalk with
drop-off from wide and narrow ends (Fig. 3). The order of the
tasks within the circuit and the order of the interface sessions
were randomly counter balanced across all subjects. At the
end of each trial session, participants responded to a NASA-
TLX questionnaire to measure subjective workload [5], and
a post-task questionnaire to rank the relative difficulty of
the tasks. The session concluded by again measuring resting
HRV of the participant after completing the circuit.

D. HRV Metrics

The raw ECG data was processed using the Kubios HRV
Premium analysis software. The processing steps included
visual inspection of the signal and manual noise removal,
correcting ectopic beats, outlier removal, and time series
trend removal (Fig. 4). The R-R intervals—the time be-
tween successive peaks (R) of the QRS complex in detected
heartbeats—were automatically extracted from the raw ECG
signals using the Kubio QRS detection function based on the
Pan-Tompkins algorithm [15].

Due to the nature and duration of wheelchair tasks,
we chose ultra-short-term (UST) (under 5 minutes) HRV
features. HRV metrics were generated from the detected
R-R intervals using the PhysionNet Cardiovascular Signal
Toolbox [16]. These metrics were calculated using 30 and
60 seconds sliding windows at 1 second increments. Previous
studies have investigated the reliability of various UST HRV
features [3], [17]–[20]. While these studies looked at individ-
ual feature correlations between short-term and ultra-short-
term metrics, we are interested in whether these features can
predict workload. The UST features used in our analysis are
summarized in Table I.

Data pre-processing: The various HRV features have
different ranges and orders of magnitude, which could have
adverse affects on our modeling. To mitigate this, we stan-
dardized all features by removing the means and scaling
to unit variance. We also applied a Yeo-Johnson power
transformation to the features to minimize the effect of
outliers on the learned model, and also improve the spread
of the features.

E. Workload Classification

We first investigated whether UST HRV features were
able to classify the subjective measure of workload. In total
we had 12 datasets based on the interface and subject trial
combinations. We created binary TLX labels for all our UST
HRV data by mapping the weighted TLX scores to a label
of low or high using the 50th percentile as the threshold.
The training dataset consisted of 14 UST HRV features and
the binarized TLX label. Support vector classification with
a linear kernel was used to predict the TLX label from the
UST HRV features.

Feature Importance: We used feature ranking with re-
cursive feature elimination and cross-validated selection of
the best number of features to judge the importance of the
various HRV features in terms of prediction accuracy. This
approach was chosen to consider all features at once and also
to capture interactions between the features. Each classifier
was fitted to the training datasets to yield separate rankings
for the 14 UST HRV metrics. Stratified shuffle splitting was
used to separate the dataset into training and validation sets
in a 70-30 ratio with 10 fold cross-validation. The identified
features were used in the final classification model.

F. HRV Trends for Different Trial Conditions

We also investigated how the various UST HRV features
differed across trials with different conditions, including the



TABLE I: Heart rate variability features.

HRV Metric Unit Description
Time Domain Metrics

NNmedian ms Median of all NN intervals
NNmode ms Mode of all NN intervals

NNvariance ms Variance of all NN intervals
NNmean ms Mean of all NN intervals
RMSSD ms Square root of the mean of the sum of differences between adjacent NN intervals

lnRMSSD ms Natural log of the square root of the mean of the sum of differences between adjacent NN intervals
SDNN ms Standard deviation of all NN intervals

Frequency Domain Metrics
hf ms2 Power in high frequency range (0.15 ≤ hf<0.4Hz)
lf ms2 Power in low frequency range (0.04Hz ≤ lf<0.15Hz)

lfhf % Ratio of lf to hf
Entropy Metrics

ApEn a.u. Approximate entropy, measure of regularity and complexity of NN time series
SampEn a.u. Eliminates ApEn bias toward regularity

Non-linear Metrics
SD1 ms Standard deviation of the projection of the Poincaré plot on the line perpendicular to the line of identity
SD2 ms Standard deviation of the projection of the Poincaré plot on the line of identity

SD1SD2 % Ratio of SD1 to SD2

Inter-beat interval: time interval between successive R peaks in the ECG waveform.
NN interval: interval between two normal-to-normal inter-beat intervals.

Fig. 4: The raw ECG signal (top). Noisy segments were marked (red background) and removed from the analysis. R-R
intervals were extracted from the QRS signal (bottom).

baseline resting periods before and after the navigation tasks.
Each trial was classified as unsafe if there were any collisions
during task execution. For trials that did not have collisions,
if the total trial time was slower than the median task time
over all subjects, that trial was classified as low performance,
and if the total trial time was faster than the median, it was
classified as high performance. With these classifications—
unsafe, low performance, high performance, baseline (pre),
and resting (post)—we performed a non-parametric Kruskal-
Wallis test and the Conover’s post-hoc pairwise comparisons
to find the strength of significance of any differences.

IV. RESULTS AND DISCUSSION

We begin this section by presenting the results of the
workload prediction accuracies. Next, we provide the sta-
tistical analysis results of the UST HRV features across
different trial conditions for a select number of notable
features. We used the non-parametric Kruskal-Wallis test
to establish significance followed by Conover’s post-hoc
pairwise comparisons if any significance was detected. For
all figures, the notation ∗ implies a p-value of p < 0.05, ∗∗

implies p < 0.01, and ∗∗∗ implies p < 0.001. Lastly, we
discuss of our findings.

A. Prediction of TLX Workload

We performed feature selection and classification on dif-
ferent datasets based on different combinations of the partic-
ipant group and interface over both 30 second and 60 second
windows, as shown in Figure 5. Although each dataset
produced a different set of important features, NNmode,
NNvariance, NNmea, lf , SD2, and SampEn were
selected most frequently by the feature selection algorithm
across all examined datasets.

Overall, prediction accuracies tended to be higher in
datasets that included only one interface and one subject
group, indicating differences in HRV features across inter-
faces that negatively affect the classifiers prediction power
when grouped together. When comparing the prediction
performance of UST HRV features measured over 30 versus
60 second windows, there was no significant difference with
the latter being slightly more accurate. This is a promising
finding, as the duration for many common wheelchair navi-
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Fig. 5: TLX prediction accuracy by participant demographic
and interface. The groupings included combining SCI and
uninjured participant data together, as well as looking at
each group individually, and combining all three interfaces
together as well as each interface individually. The classi-
fication was performed with UST HRV features measured
over (a) 30s windows and (b) 60s windows.

gation tasks are less than one minute. Therefore, being able
to predict workload over smaller time windows is important
for the utility of online workload prediction.

As seen in Figure 5, the classifier is consistently the
most accurate in predicting the TLX workload score for
trials using the headarray interface, across all participant
groupings.

The trials with the joystick interface tended to be the
fastest, so there were fewer windows over which UST
HRV features could be calculated. Fewer windows resulted
in sparser datasets for this interface, which may be one
explanation for the less accurate predictions compared to
the headarray interface. Furthermore, the joystick interface
requires less physical exertion compared to the headarray,
which may be another reason for the reduced accuracy of
workload prediction using the HRV features.

With the sip/puff interface, the trial times were longest
compared to the other interfaces, resulting in more windows
per trial. From the perspective of the machine learning
algorithm, this is a strength. However, the operating mecha-
nism of the sip/puff interface—which requires inhaling and
exhaling through a straw to provide commands—could affect
the natural heart-rate rhythm which, in turn, can negatively
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Fig. 6: Difference in (a) RMSSD, (b) SDNN, and (c) lfhf
measured over windows of 60 seconds using the headarray
interface. There is a significant difference in these measures
during baseline resting prior to the start of the experiment and
during trials with collisions. Box plot showing the quartiles
and distribution of the data, overlaid with a scatter plot of
the data.

affect the overall measured UST HRV features’ ability to
predict workload. Exploratory scatter plots provided in the
Appendix illustrate that the sip/puff data had very little
variance between different trials; evidence that this interface
may not be well suited to using UST HRV features for the
purpose of predicting workload.

B. Differences in HRV Trends

HRV signals were measured during five different exper-
imental conditions, as described in Section III-F, for the
same 12 datasets investigated in Section IV-A. Datasets



that included the joystick and sip/puff interface showed no
statistical significance for any UST HRV features between
the five trial conditions.

We do observe statistical significance between various
HRV features for trials with the headarray interface. A subset
of these results are shown in Fig. 6. For RMSSD and
SD2, there was a significant difference during unsafe trials
with collisions and the baseline resting state prior to the
tasks. This suggests that UST HRV is correlated with unsafe
conditions. There was also a significant difference in lfhf
between unsafe and low performance driving conditions.

C. Discussion

Our results unveil a marked relationship between interface
type and the density and spread of HRV features computed
while a given interface is in use. The latter directly impacts
the ability of a classifier to accurately predict workload
scores using HRV features.

Our results further indicate that using any single UST
HRV feature on its own may not be sufficient in predicting
workload during wheelchair driving tasks. However, we are
able to predict the workload with a model learned from a
combination of ultra-short-term HRV features, with accura-
cies of over 90% for the interface associated with the greatest
spread and density of HRV features (the headarray).

Our future work will investigate whether there is a causal
relationship between changes in user input and changes in
HRV. Also of interest is to investigate whether workload and
changes in HRV have a causal or confounding relationship.

V. CONCLUSIONS

This study investigated differences in HRV metrics during
powered wheelchair navigation, and their power in predicting
cognitive load. To our knowledge, this was the first study
to evaluate UST HRV metrics during powered wheelchair
navigation by persons with and without spinal cord injury,
using three commercially available interfaces that are each
operated by different parts of the body. We found evidence
that the interface affects the HRV values and the ability to
predict workload. Further studies are required to investigate
the physiological phenomenon that affects how the physical
operating mechanism of the interfaces affects the HRV and
workload calculation, and whether the identified features of
user input are reliable measures of workload.
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APPENDIX

We include additional plots from the data analysis to
support the discussion of our results.

As seen in Figure 7, exploratory scatter plots showed that
the joystick data is sparse in comparison to the headarray
data, which is quite dense. The joystick and headarray data
both display a good amount of spread. The density of the
data and the spread may explain why predictions using the
headarray interface trials were the most accurate. In contrast,
the sip/puff data does not display much spread, which may
explain why the classifiers suffered when using data collected
from sip/puff trials.



Fig. 7: Scatter plots showing correlation and spread of all HRV features listed in table I for joystick (top), headarray (middle),
and sip/puff (bottom) interfaces. Each HRV feature is plotted against all other HRV features (off-diagonal plots), and against
itself (diagonal plots). The headarray data is most dense and well spread. The joystick data is sparse and there is very little
spread in the sip/puff data.


