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Abstract— Users of assistive devices vary in their extent of
motor impairment, and hence their physical interaction with
control interfaces can differ. There is the potential for improved
utility if control interface actuation is mapped to assistive
device control signals in a manner customized to each user.
In this paper, we present (1) a method for creating a custom
interface to assistive device control mapping based on the design
of a user’s bias profile, (2) a procedure and virtual task for
gathering interface actuation data from which to build the
bias profile and map, and (3) an evaluation of our method
on 6 participants with upper limb motor impairments. Our
results show that custom interface remapping based on user
bias profiles shows promise in providing assistance via an
improvement in the reachability of the device control space.
This effect was especially pronounced for individuals who had
a more limited reachable space.

I. INTRODUCTION

There is a large variability in users’ interactions with control
interfaces used to engage with robotic and assistive systems.
Despite efforts to make this interaction more seamless [1],
there persists a lack of truly individualized customization
of most interfaces. Within the domain of assistive robotics,
this discrepancy is especially pronounced due to varying
degrees of injury and recovery among the intended users.
When it limits the controllability afforded to users with motor
impairment, the result can be a lack of user agency that
results in frustration, disuse, and even injury [2].

The question of modeling how an individual uses an
interface is an important one, as the information encoded in
such a model can be used to provide customized assistance
in accordance with personalized interface usage character-
istics and preferences. In this work, we address bias in
teleoperation that stems from a user’s ability (or inability)
to reach the entirety of an interface’s control space, and
which is influenced by a given user’s behavioral tendencies.
Computing such a bias metric allows for comparison to an
ideal interface actuation baseline, defined to be the entire
available control space respective to the chosen interface.

The ability to compare a specific user’s bias against this
ideal baseline is beneficial for a number of reasons: (1)
specific to this study, this comparison allows us to remap
the regions of the control space that the user is able to reach
to then encompass the entire available control space; (2)
knowledge of asymmetric patterns in teleoperation may be
used to help influence training in the use of that interface,
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tailored to the individual user; (3) this information could
potentially be utilized as an additional evaluation technique
for approving individuals to operate various assistive devices;
and (4) the computation of asymmetric divergence between
baseline and user sets situates our remapping technique for
insertion into a machine learning framework, should the
divergence be used as a term to guide optimization.

Since individuals often experience day-to-day variation in
their behavior due to any number of internal and environ-
mental factors, and because individuals who operate assistive
devices often utilize their devices in multiple settings, it
makes sense that a single mapping for an interface might
not be comprehensive for all scenarios. To address this,
we present our mapping procedure in a framework called
Augmented Dynamic Remapping (ADR), which allows for
context-dependent swapping between control maps in real-
time, with a tunable degree of transitional smoothing. ADR
could allow, for example, a user operating an assistive device
to seamlessly transition from an ‘at-home’ mapping to a
‘street’ mapping; alternatively, ADR could be used to further
segment an ‘at-home’ mapping into task- or room-specific
maps that arise in response to the user’s daily activities.

This work presents the following contributions:

1) Design of a user’s bias profile: An individual user’s
bias profile is a way to quantitatively compare their
task-agnostic skill in teleoperation to other users and
against baseline or expert conditions. We utilize well-
established geometric optimization techniques to char-
acterize user bias during teleoperation.

2) Augmented Dynamic Remapping (ADR): ADR is a
method which builds a customized map between a
user’s control interface actuation and the space of
allowable control signals. It allows for a real-time swap
between different remappings of the control space
according to context information during teleoperation;
we use this in conjunction with various bias profiles to
allow for user-specific remapping.

3) Mitigation of signal noise via bias models: With a
model of a user’s bias across multiple tasks, we use
this customized model of the user in order to recover
approximate control signals in instances of control
signal drop-out or the presence of heavy noise.

In Section II, we discuss some related works and gen-
eral background for the challenges outlined above. In Sec-
tions III–IV, we define our bias metric and provide insight on
our specific approach. In Section V, we detail the structure of
our experiment. In Sections VI–VII, we present the data from
our study and offer some results and explanatory discussion.



II. BACKGROUND
One difficulty in designing assistive devices for individuals
with motor impairment is that the design objective is often
in flux. That is—due to the effects of degeneration and
rehabilitation—the extent to which an individual is affected
by their motor impairment on any given day is bound to shift
[3]. Depending on the severity of these shifts, users might
experience variation over time in their ability to reach the
entire control space. Even a transient inability to reach the
entire control space can limit the options of control interfaces
available for individuals with neuromotor deficits; and any
sort of reduction in control space reachability inherently
limits the commands that can be issued with that interface.

Longstanding techniques for customizing assistive device
control interfaces adjust certain preset mechanical configur-
ations and thresholds. These techniques, outlined in Guirand
et al. [4], include uniform scaling along principal axes, axial
tilt, and radial expansion/contraction of deadzones. They
often require expert clinicians to complete, and/or additional
measurement equipment or hardware to accomplish [5].

In the domain of workspace spanning, similar approaches
as utilized in our methodology have been proposed to map
the effective workspace of two separate robots to one an-
other [6]. It is less common for these approaches to be used at
the level of the assistive interface, with one notable exception
being when the interface and robot are one and the same [7].

There is a dissonance that occurs when the user of an
assistive device does not feel as though they are the one in
control of the device. A lack of a sense of agency when
controlling an assistive device can lead to dissatisfaction,
injury, or total disuse [2]. Such an effect also presents when
control signals for the device derive from robotics autonomy
paradigms that infer human intent [1], especially when
human-autonomy transparency [8] is lacking or incomplete.

To the authors’ knowledge, there are currently no
computationally-efficient procedures for designing a one-shot
remapping of a given control interface (1) in an asymmetric
and user-specific manner that preserves user agency, and (2)
without the help of a skilled technician.

III. BIAS METRIC FORMULATION
Here we provide motivation, and a tractable representation,
for bias metrics as a characterization of interface use.
A. A Metric of Bias in Interface Use
The variety of physiological user bias that we are interested
in addressing with this work is a consequence of limited (in
range or stability) interface actuation, due to an individual’s
unique physiology. This bias presents as a systematic error
between the control space accessible to the user and the
full control space of the interface. Such bias is amplified
to a greater degree in individuals with motor impairment.
The reason, in part, is because interfaces generally are
designed for a specific physiological average that does not
address the variety of physiological states that may benefit
from use of these devices. The concept of a quantifiable
metric which conveys an individual’s interface-dependent
teleoperation bias is at the heart of the current work.

Fig. 1: Example parameter-
ization of reachable control
space using CHO. Convex
hull (red outline) and its sim-
plices (straight-line compon-
ents). Colors represent con-
trol value level sets within
the hull. Ray-tracing (green
dashed lines) accounts for
asymmetrical control distri-
butions, further detailed in
Section IV-A.

Consider a 3-axis joystick, the
interface used in our experimental
work: a lever arm designed to
be mechanically deflected about
a radial pivot point at its base
and simultaneously twisted inde-
pendent of mechanical deflections
of the lever-arm. When mapped
to control a machine, the max-
imum amount of deflection of the
joystick about these three axes
defines the bounds of the con-
trol space, and consequently the
bounds of commandable control
signals (such as velocity).

For those with motor impair-
ments, there may be regions of the
control space that are not reach-
able. We define the reachable set Ureach⊂U for an individual
as the subset of the entire control space U that is reachable
by them when operating a given interface. This reachable set
can be determined in a number of ways; ours is described in
Section III-B. The embedded, reachable region subsequently
can be compared to the morphology of the given interface’s
entire control space, from which we can derive what we refer
to as an individual’s personalized bias metric.
B. The Meaning and Parameterization of Reachability
We define reachability as the set of all points in the interface
control space that a user is physically able to access in an
intentional manner. For the 3-axis joystick, this reachable
control set is embedded in the bounded (ux, uy, uz)-space of
possible velocity commands.

We measure reachability via temporal sampling, resulting
in a sparse representation of a given user’s reachable set. We
parameterize the reachable set using summary statistics—
mean, variance, and omission. Mean and variance are stand-
ards for the parameterization of normal (or near-normal) dis-
tributions of sampled data. Omission refers to a combination
of deadzones and rejection of unstable points located on the
outer bounds of the reachable control set.1

In detail, we use convex hull estimation as a tractable
parameterization of the reachable set for a given user. Convex
hull optimization (CHO) algorithms [9] return a set of
linear functions, simplices C, that together encapsulate the
(majority) of points in a given set within a convex polygonal
hull (Figure 1). Each vertex in the subsequent hull can be
assigned a weight dependent on the number of control signals
in their proximity. Control distributions with highly irregular
geometries can thus be considered while also taking into
consideration concentration of control signals, making CHO
of particular interest in the categorization of interface bias.
A center of mass can be calculated for the distribution, along

1The omission of unstable outliers, via what is effectively a low-pass
filter, helps to reduce the effects of spasticity. For many assistive control
interfaces such inputs already are filtered. Spastic motions are by nature
unplanned, and our definition of reachability asserts that the reachable set
Ureach is physiologically accessible in an intentional manner.



with a mean and variance along all axes. Parameter tuning
changes the amount of points allowable outside the resultant
hull; effectively filtering the set Ureach.

We define the parameterization of bias ξ using 2-
dimensional CHO as:

ξτ ≡ {µux ,σux ,µuy ,σuy ,τ
cm
x ,τcm

y },
where τ is a set of trajectories which spans the full control
space, µ and σ are the means and standard deviations of the
set of control points in τ w.r.t. both of the x- and y-axes. The
center of mass, denoted by (τcm

x ,τcm
y ), captures location bias

in the user’s preferred velocity profile; for instance, it might
represent a tendency towards asymmetric teleoperation. The
distribution metadata (µ,σ ) confers stability information
which can be used for assessing whether a point should be
included in the reachable set or otherwise omitted.

IV. BIAS METRIC DEPLOYMENT
In this section, we detail our specific implementation of the
bias metric informed remapping, and formalize a number of
the supporting concepts used in the remapping procedure.
A. Augmented Dynamic Remapping (ADR)
Given a representation, via CHO, of a user’s reachable set
Ureach, we then perform a dynamic remapping of the interface
control signals. Our Augmented Dynamic Remapping (ADR)
approach compares the resulting hull to the entire available
control space U in order to specify an augmented control
map φ : Ureach→U that stretches the reachable space of the
user to the full control space U.

In detail, we first employ a discrete mapping method,
that partitions U into a mx ×my cell grid. The level sets
of this grid correspond to level sets of control signals with
the same magnitude (though different directions), defined as
SU. Similarly, we partition the convex hull describing Ureach
into cell-wise level sets, defined as SUreach .

We next determine a set of proportional values ρ , which
each encompass information about the coverage of a given
‘slice’ (simplex) of the hull, detailed in Algorithm 1. Expli-
citly, we measure the distance from the boundaries of the
full control space U to each level set s ∈ SUreach , in order
to determine how much to augment each component of the
hull (lines 4-7). We then use a combination of ray tracing
alongside proportional comparison (via ρ) to map the cells
in SUreach to their partner cells in SU (lines 9-14).

The techniques described up to this point operate within
two dimensions only because we constrain the CHO com-
putation to two dimensions for reasons of computational
efficiency: the n-dimensional extension of CHO requires that
all planar computations performed for the discrete mapping
become volumetric computations with a significantly longer
runtime. Instead, to extend our approach to interfaces of
dimension higher than two, we introduce the dynamic part
of our ADR approach.

Specifically, for an n-dimensional interface, for each re-
maining [n−2]-dimensions of the signal, we bin the mass of
that dimension into mz levels. We then run the abovemen-
tioned remapping procedure to link SUreach with SU for each
of the mz bins, resulting in a set of remaps. For the 3-axis

ALGORITHM 1
The Discrete Radial Mapping Method
Given: Set C of convex hull simplices, step size η

1: for c ∈ C do
2: cmid ≡ midpoint of c
3: θ ← atan2(cmid,y,cmid,x)
4: r← cmid
5: while r /∈ on boundary do
6: r← r+(θ ·η)
7: end while
8: value← 0
9: for s ∈ SUreach do

10: value← value + (1.0−ρ)/η

11: for cell ∈ s do
12: cell← value
13: end for
14: end for
15: end for

joystick example, each remap effectively is conditioned by
the extent to which the user is rotating in the third control
dimension. As the user teleoperates, the maps are lightweight
enough to allow for switching between them in real-time.
B. Deployment Strategies
Here we propose two deployments of our interface remap-
ping that expands the reachable set of a specific user. ut ∈U
is a raw interface signal (ut

x,u
t
y,u

t
z) at a given timestep.

The first deployment, ADR, is the remapped controls using
our CHO + ADR procedure. The formulation for condition
ADR is as follows:

ut
ADR = φ(ut). (1)

The second deployment, ADRs, is a linear combination
of the current ut

ADR and that signal smoothed over a small
moving time window. ADRs is formalized as:

ut
ADRs

= (1−α) ·ut
ADR +α · ũt

ADR (2)

where ũt
ADR is the average remapped control signal over the

past k timesteps,

ũt
ADR =

∑
t
i=t−k ut

ADR

k
(3)

and α is a float value between 0.0 and 1.0.
We compute α as a function of the inflection frequency,

f , of the user’s real-time control signals.

α =


0.0, if f < flower

1.0, if f ≥ fupper

interpolate, o.w.
(4)

Given f , we thus map α proportionally to a pre-determined
range of values [ flower, fupper].

To compute the inflection frequency f , we determine the
number of individual traces that occur within a given time
window of length k sampled at frate Hz. We define a trace
a trajectory segment with a change in angle of ≥ 30◦ from
the preceding point in the trajectory. When a trace makes a
sudden deviation—corresponding to a high contemporaneous
jerk in the signal—we clip that trace and count it as an



inflection before tracking the next trace. Additionally, f is
used as the omission criteria for determining the reachable
set Ureach. Points in the user distribution where f > 8.0 are
considered to be ‘unstable’ and not included in Ureach.

V. EXPERIMENTAL DESIGN
Here we detail our experimental setup and protocol.
A. Hardware and Materials
We used an APEM Inc. IPD Ultima 3-axis Joystick for this
study. Signals were logged at a frequency of 60 Hz. For
CHO, we used Qhull [10] in python. For the virtual 3D-
center-out task environment, we used pyglet.
B. Experimental Parameters
For this study, we chose the resolution parameters η = 0.5,
mx = my = 160, and mz = 5. We discretized the z-axis
into 5 layers (mz), to optimize the tradeoff between fidelity
and computation time. These parameters kept computation
time under 25 minutes. Parameters controlling the inflection
sampling frequency were chosen as flower = 8.0 Hz, fupper =
20.0 Hz, frate = 40.0 Hz, and k = 20 based on the literature
surrounding the frequency of tremor [11].
C. Participants
Eight participants were recruited: 5 stroke survivors (55.8
± 10.2 years of age) and 3 individuals with Spinal Cord
Injury (SCI) (41.0 ± 20.5 years of age) All participants were
screened for ability to operate a 3-axis joystick (twisting),
and presence of motor impairment in their dominant arm.
All participants used their dominant arm. One stroke parti-
cipant was not able to complete the tasks due to severely
reduced mobility in their dominant arm, and another stroke
participant was unable to complete the tasks due to fatigue
from teleoperation leading to extended rest intervals. Data
from these two participants is not included in the analysis;
we present data from 6 participants (3 stroke, 3 SCI). All
participants gave their informed, signed consent to participate
in the experiment which was approved by Northwestern
University’s Institutional Review Board.
D. The 3D-Center-Out Reaching Task

Fig. 2: 3D-center-out
reaching task

To collect data concerning the reach-
ability of the control space for a
given user during teleoperation, we
designed a virtual center-out reaching
task in 3D which consisted of a series
of target dots (2D position + 1D size)
and one controllable dot (Fig. 2).

Each of the target dots were presented in random order,
and parameterized by (x, y, z), where z corresponds to the
dot’s size. The user was able to control a separate dot (‘the
controllable dot’) with the 3-axis joystick; specifically, the
user was able to deflect the joystick to cause the controllable
dot to move translationally and they were also able to rotate
the joystick to change the dot’s size. The participant goal
was first to teleoperate the controllable dot until it was in
the same location as and the same size as the current target
dot, and then to hold the controllable dot in that position for
2 seconds (as a measure of stability).

E. Experimental Procedure
Study sessions started with a training phase, where par-
ticipants were given a 3D-center-out task with 25 targets
randomly sampled from the set of all possible targets.
Participants were familiarized with how the joystick control
maps to the size and position of the controllable dot, as well
as the task’s completion conditions. After this, participants
first completed the 3D-center-out task (125 targets) without
any remapping (condition ¬ADR).

The resulting distribution of participant control commands
were used to compute their reachable space and build their
customized three-dimensional map φ . The generation of the
three-dimensional map can be a lengthy process depending
on the discretized resolution of U and the number of binned
hulls along the third dimension. Hence, the choice of a 160 ×
160 discrete grid as well as 5 separate hulls was determined
experimentally to keep computation time under 20 minutes.

After the remap was computed, participants performed two
additional rounds of the full 3D-center-out task under both
ADR and ADRs, with a random presentation balanced across
participants. Every 25 targets, participants had the option to
take a break to combat fatigue. As stated in Section V-C,
rates of fatigue during teleoperation were variable between
participants, and the optional rest periods included in the
3D-center-out task were utilized to varying degrees across
participants. As such, participants completed this protocol
over 2 or 3 sessions, depending on their rates of progress.
F. Task Completion Metrics and Evaluation
Our bias-aware teleoperation remapping was evaluated
through the computation of a number of metrics on both
raw and remapped user commands. Comparisons were made
between remapped controls (ADR and ADRs) and unmapped
controls (¬ADR), as well as between raw and remapped
controls under the ADR and ADRs conditions.
• Change in target completion: A per-target pairwise

comparison of the number of targets completed across
remapping conditions.

• Change in path efficiency: The difference in path length
between trials with remapping (ADR or ADRs) as
compared to trials with no remapping (¬ADR).

• Time to first reach target: Time taken for the user
controlled dot to first fall within threshold of the target.

VI. RESULTS
We begin by presenting an overview of the effect of our
remapping conditions on each participant (Fig. 3).
A. Reachability
In Fig. 3, for both remapping conditions ADR and ADRs
each target is presented as a colored square, where the
color represents the effect that remapping had on the target’s
reachability by the participant (panels (a) and (c)). Green
indicates a location reachable only after remapping; blue
a location reachable before and after remapping; red a
location previously reachable and then unreachable after
remapping; and gray a location unreachable both before and
after remapping.



Fig. 3: Overview of effect of remapping conditions on task performance. Effect of (a) ADR and (c) ADRs on target completion. Effect of (b) ADR and (d)
ADRs on path efficiency for targets that could be reached under both ¬ADR and, respectively, ADR or ADRs. (Targets not reached under both conditions
are represented in black.) Higher intensity of colors maps to greater change—increase (orange) or decrease (blue)—in path length.

We break down these reachability results per participant.
For S6, both ADR and ADRs had a net positive effect on their
target completion, with ADRs being particularly effective
in helping them reach more targets (∼ 10% increase). For
S4, both ADR and ADRs improved reachability of ∼ 8% of
the targets, but also hindered their ability to reach a similar
number of targets that they were previously able to reach.
This is seen more in the first 2 hulls, and likely reflects an
asymmetry in S4’s actuation of the joystick in the twist axis,
with a bias towards one direction of twist over the other.

Participants S1-3 were able to successfully complete >
98% of targets before any remapping occurred. Under ADR
and ADRs, no significant improvement in target completion
was observed for these participants. Participant S5 was able
to successfully complete > 98% of targets before remapping.
However 6% of targets become unreachable after remapping,
for both of ADR and ADRs. Based on observations during
their trial, the criteria for omission f (IV-B) may have
inaccurately omitted points from the reachable space in
computing the remap, resulting in a larger than desired
change to their control map under ADR.

B. Efficiency

We take a deeper look at targets participants were already
able to reach under ¬ADR and whose reachability was not
impacted by the remapping. For these targets, we present the
change in path length traversed after remapping (panels (b)

TABLE I: Tally of each target completion condition. Column headings
correspond with colors in Fig. 3.

Participant ID Condition Green Blue Red Gray

S1 ADR 2 117 0 0
ADRs 2 117 0 0

S2 ADR 1 118 0 0
ADRs 1 116 2 0

S3 ADR 1 117 1 0
ADRs 1 116 2 0

S4 ADR 9 98 11 1
ADRs 10 99 10 0

S5 ADR 1 111 7 0
ADRs 1 111 7 0

S6 ADR 9 100 5 5
ADRs 12 104 1 2

and (d)). The effect of remapping on the path length of
target trajectories provides some insight about the total effort
required from a participant, on average, to complete the 3D-
center-out task. For 4 out of 6 participants, we saw that path
length was shorter under remapping conditions in extreme
hulls—that is, hulls which correspond to larger simultaneous
deflection and twisting motions of the joystick.

We also present in Fig. 4 the time taken for each parti-
cipant to first reach a target, averaged over all targets. Note
that the high standard deviation is not unexpected, because
the distance between the starting position of each trial
(neutral joystick position) and the respective ending positions
differ between targets. Furthermore, as each participant saw
the same targets, differences between them are due to inter-



Fig. 4: Time to first reach targets across remapping conditions and parti-
cipants. Statistical significance was computed using a t-test.

participant variability in response characteristics.
We found that the time taken to first reach the targets

decreased significantly under ADR for 5 out of 6 participants
(S1-3, S5-6), indicating a positive effect of our remap. This
is likely due to the fact that, under ADR, a lesser magnitude
of interface actuation is required by the user to achieve a
similar reachability of the control space as in ¬ADR.

A similar decrease was not observed for trials under ADRs.
This might have been due to the standardized sampling of f
and its effect on the resultant computation of α; as optimal
frequency thresholds may differ for participants, its effect of
control blending may have been diluted. Another potential
reason was the use of a moving average to compute the
resultant control signals, which introduces a response lag to
user input.

VII. DISCUSSION & FUTURE WORK
From this pilot study, across participants, we found an im-
provement in interface actuation efficiency under remapping
ADR, and a range improvement in reachability with the
addition of either remapping condition.

These results suggest that further tuning parameters within
our framework—resolution of the remap, omission frequency
f , rate frate, step size η—will be most effective customized
for each user. Such individualized tuning will likely require
a more involved data collection phase for building the bias
profile. The optimization could be realized by embedding our
remapping procedure within a machine learning framework.

When a given participant had an almost fully reachable set
to begin with, there were cases of remapping hindering their
target achievement. This could be because such participants
already possess a complete map of the full control space, and
(small) adjustments to that map via our remapping procedure
often showed up as subtle discontinuities during operation.

It is important to note that the procedure outlined in this
study will not account for potential ‘holes’ in a user’s reach-
able space, nor would it be able to generate more complex
nonlinear remappings. We did not observe these during our
study, though it is conceivable that some individuals may

have unreachable regions embedded within the space that
our method would deem as the reachable set Ureach; due
to our use of CHO to determine the reachable set, which
requires convexity. One possible approach to combat this
requirement would be to partition the control space into
multiple locally convex regions, allowing for more complex
and discontinuous reachable sets to be parameterized. In
future work, we hope to extend our remapping model to more
flexibly handle high-dimensional interfaces, nonlinear map-
pings (e.g., orientation mismatch), as well as to incorporate
user-specific parameter tuning for our remapping procedure.

VIII. CONCLUSIONS
In this study, we have presented a novel method for effi-
ciently computing a customized map between a user’s avail-
able space of interface actuation and the full control space
of the interface in question. The utility of our remapping
was evaluated in a study with human participants. We found
that the total control actuation required to reach the same
space post-remapping was generally reduced, suggesting a
beneficial effect of our remapping procedure, and our results
show improvements in task completion efficiency.
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