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Abstract. This paper details the development, implementation and ex-
perimental evaluation of an interface-aware, task-agnostic assistance sys-
tem for shared human-robot teleoperation, specifically applied to a 7-
DoF robotic arm. The system addresses a limitation of current shared-
control methods by considering the impact of control interfaces on user
input precision and the robot agent’s incomplete understanding of the
human’s policy. The approach is evaluated in empirical case studies in-
volving participants with spinal cord injuries. The personalized assis-
tance system improves safety and reduces cognitive load.

1 Introduction

Individuals with severe motor impairments face limited control interface options,
posing considerable challenges in operating devices designed to enhance their
quality of life. The challenges in operating assistive devices are compounded by
interface and physical constraints, device complexity, task complexity, and con-
trol fidelity requirements. Incorporating robotics autonomy in assistive devices
can improve physical independence for those with motor impairments, but chal-
lenges arise when human intentions are misaligned with the signals measured
by the robots through the interfacing device [10]. Discrepancies can occur be-
tween the intended signals from the human and those received by the autonomy
through the interface due to various factors such as lack of skill and symptoms
of neuromuscular injury such as spasticity or tremors [2, 21]. Fatigue, stress, and
complex mappings between robot actions and interface actions can worsen these
discrepancies [8].

Shared-control assistance, often applied to task-level commands such as robot
joint or mobile base velocities, does not generally consider the physical interface
operation when interpreting user commands [1, 14]. Discrepancies between user-
intended signals and those measured through the interface can, however, affect
the performance of shared control systems [16]. Probabilistic robotic techniques
have been designed to handle sensor measurement noise and actuation uncer-
tainty in autonomous robots operating outside controlled lab settings [19] but
do not handle noise in the human interface signal. We posit that in human-
robot systems with human control signals, it is important to also consider an
additional source of uncertainty that contributes to these discrepancies—the un-
certainty and noise associated with human interaction with the control interface.
This paper contributes the following:
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1. An algorithmic formulation of interface-aware, task-agnostic shared con-
trol assistance, that relaxes key assumptions in our seminal interface-aware
framework [9].

2. Experiment evolution from 3-DoF toy example in simulation to real-hardware
7-DoF robotic arm application.

3. Case study analyses of our approach with spinal cord injured end-users.

2 Background and Related Literature

We present a summary of related research on robot-aided assistance, mapping
control interface signals to robots, and interface noise handling.

Robot-Aided Assistance via Shared-Control Shared control—also called
assistive teleoperation, assist-as-needed, or mixed initiative control in various
domains— is of importance in human-robot interaction because it enables the
distribution of control between the human and autonomous agent to improve
overall team performance and safety without taking away the human’s full
agency [15, 14]. The specific shared control framework is often domain and ap-
plication specific [1], and spans a wide range of interactions and arbitration
topologies between the human and autonomous partners.

In signal-level arbitration, low-level signals are provided by both the human
and autonomy to control the same robotic device. A common approach is to
define a blending mechanism that decides how and when to incorporate signals
from both partners, and typically depends on various requirements such as the
task context [4] or the preferences of the human partner [7]. Alternatively, in
policy methods the human and autonomy actions are not blended, and rather
the autonomous agent action is optimized given the human command [3, 10].

Mapping Control Interface Signals to Robots Assistive robots designed
to aid in daily living activities predominantly operate in the SE(3) space, pos-
sessing a 6-dimensional task space. However, control interfaces tailored for in-
dividuals with severe motor impairments often are constrained in the number
of independent control signals they can generate. The three primary interfaces
include the 2-axis or 3-axis joystick, the 1-D or 2-D head-mounted switch array,
and the 1-D sip/puff device. To control high-dimensional assistive robots with
these constrained interfaces, users encounter a fundamental disparity between
the low-dimensional control command space and the robot’s high-dimensional
motion space. To bridge this gap, control interfaces often utilize modal mappings,
wherein mode switching enables a single interface action to govern multiple robot
motion dimensions [20]. This indirect mapping can impact the difficulty of con-
trolling such robots with physically accessible control interfaces.

Handling Uncertainty in Interface Signals Prior work in handling inter-
face signal uncertainty is primarily concerned with non-commercial interfaces
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that rely on physiological signals such as EMG or EEG [22, 11]. Although the
relationship between intended human motion and produced human motion has
been extensively studied in other domains [13], it has received limited attention
within the field of robotics [12]. Prior work in handling the uncertainty in user
input typically filters or smooths high-frequency noise in continuous input sig-
nals [17, 18]. To our knowledge, no robotics work other than [9] uses models of
the stochasticity in user input to infer the human’s intentions and subsequently
provide appropriate corrections.

3 Technical Approach

We define interface-awareness as an explicit and deliberate representation of
the uncertainty in measured user commands. Figure 1 shows the sources of noise
in a typical shared control system. Classically, two primary sources of onboard
noise and uncertainty are modeled—noise in sensor measurements ϵs and uncer-
tainty in actuation ϵa [19]. We identify distinct interactions in manual teleoper-
ation affecting user input uncertainty, necessitating interface awareness: (1) the
sensorimotor noise (ϵh) due to various sources such as cognitive overload and
neuromuscular injury and (2) the noise from the interfacing system (ϵi) arising
from the physical mechanism of how commands are issued and how control mode
switches occur. We posit that modeling how physical interface-activation actions
are mapped to task-level robot actions, and how the control signal is then al-
tered through the interface, will help the autonomy to reason about deficiencies
in human teleoperation in order to improve the quality of robot operation.
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Fig. 1. Interface-aware assistance pipeline. Inferred interface signal ϕinferred is used
instead of the raw human signal ϕm. Noise and signals specific to interface-awareness
are highlighted in green.

In our framework, we define ϕ ∈ Rnϕ as the action that actuates the physical
interface, which we refer to as the interface-level action (e.g., joystick deflection).
Φ is the set of all interface-level actions, and nϕ is the dimensionality of the inter-
face. Let ϕt

i ∈ Φ denote the unobservable intended interface-level action initiated
by the user that aims to achieve the task-level action at ∈ A, while ϕt

m ∈ Φ is
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the actual measured interface-level action. p
(
at|xt

)
is the control policy the user

follows during task execution, where x denotes the state. p
(
ϕt

i|at
)
is the user’s

internal model of the true mapping from task-level action primitives to the in-
tended interface-level physical actions (e.g., to rotate the robot clockwise, deflect
the joystick 90◦). p

(
ϕt

m|ϕt
i

)
is the model of stochastic deviations of the measured

interface-level actions from the intended interface-level actions and is the user
input distortion model (e.g., 80◦ measured for an intended 90◦ deflection).

We build upon our theoretical work [9], in which the model required knowl-
edge of the ground-truth human control policy p(at|xt)—easily accessed in simu-
lations, but challenging to acquire in real-world scenarios, especially when human
optimization includes physiological considerations such as motor impairments.
Here we hypothesize that within an interface-aware assistance scheme, using
models of a user’s stochastic interface interaction and internal mapping from
interface to robot control—easier to construct and task-agnostic—can improve
task performance even without knowledge of their policy p(at|xt).

Algorithm 1 Task-Agnostic Interface-Aware Assistance
1: function Interface Aware Assistance(t,ϕt

m)

2: x← y
(
f
(
ϕt

m

))
▷ Forward project ϕt

m

3: xsafe ← Check Safety(x)
4: if xsafe = True then
5: ϕt

c ← ϕt
m

6: else
7: at

e ← Estimate Action(∆t,ϕt
m)

8: ϕt
i, H ← Infer Intended Command(ϕt

m, at
e) ▷ Algorithm 1 in [9]

9: if H ≤ ϵ then ▷ uncertainty is low
10: ϕt

c ← ϕt
i ▷ correct user commands

11: else
12: ϕt

c ← 0 ▷ block commands

13: return ϕt
c

Algorithm 1 details our task-agnostic interface-aware assistance algorithm.
The method initially projects the current measured interface command into the
future (Algorithm 1, line 2) to determine the robot’s end effector pose if the
interface command were to be applied. If the resulting robot state is deemed
unsafe (end effector is in collision with known objects in the environment), we
estimate the most probable task-level action (line 7, and Algorithm 2) and infer
the intended interface-level action (line 8) utilizing our knowledge of p(ϕi|a) and
p(ϕm|ϕi). We compute a confidence in this inference as the normalized entropy
H of the distribution p(at|ϕt

m), computed as in the seminal theoretical work [9],
and correct the measured interface-level action if the entropy H is below a preset
threshold ϵ (ϵ=0.9 in our hardware implementation).

Algorithm 2 outlines our approach to identify the most probable task-level
action, at, without prior knowledge of the user’s policy. The inputs to the Es-
timate Action function are the projection time-step and the current measured
interface-level action. The algorithm first computes the action given the interface
level command using the inverse of the mapping function of interface commands
to robot actions (line 2). The next steps of the algorithm handle probability
vectors representing the likelihood of actions based on the current observations
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Algorithm 2 Action Estimation with Domain Knowledge
1: function Estimate Action(∆t,ϕt

m)

2: at ← f−1
(
ϕm

)
3: P ← ones(length(A)) ▷ Initialize a vector of ones with the same length as A
4: P [at]← 0 ▷ Set the unsafe action to cold
5: P ← P∑

P
▷ Normalize the vector

6: P ′ ← zeros(length(A))
7: P ′[at−1]← 1 ▷ Sets prior action to hot
8: if ∆t > Tlong then
9: Pa = Pa − ηP ′ ▷ η is a weighting factor
10: else if ∆t < Tshort or ϕt−1 is motion then
11: Pa = Pa + ηP ′

12: P ← P∑
P

13: at
estimate ← argmax(P )

14: return at
estimate

of the environment and domain knowledge of interface usage characteristics [16].
We introduce a vector P initialized with ones (representing a uniform proba-
bility across all possible actions in A (line 3). We assume any unsafe state and
its correlating interface-level action as unintended. Therefore, the action deemed
unsafe (obtained from the interface level command) is assigned a zero probabil-
ity (line 4), making it ‘cold’. To ensure valid distribution representations, P is
normalized (line 5). A new one-hot vector P ′ is introduced in line 6, hot at prior
action at−1 (line 7). Temporal interface input characteristics are utilized to ad-
just the probability vector P given the prior action using P ′, using a weighting
factor η, based on the time difference between the current and previous input
(lines 8-11). For longer time intervals (greater than Tlong), the algorithm de-
creases the weight of the prior action. For shorter intervals, or if the previous
command indicates motion, the algorithm increases the weight. η determines the
strength of the adjustment. Following the adjustments, the vector is once again
normalized. Finally, the action with the highest probability is returned as the
estimated action (line 15). Essentially, to perform action estimation Algorithm 2
integrates domain knowledge, in the form of safety considerations from sensor
input, and temporal dynamics of interface use.

4 End-User Case Studies

We executed our task-agnostic, interface-aware algorithm on robot hardware,
conducting two case studies with motor-impaired participants. This constitutes
the first implementation of an interface-aware framework on real hardware and
without presupposing complete knowledge of human’s control policy, contrasting
prior simulation work with strict human policy and trajectory constraints [9].

Hardware and Materials We utilized a sip/puff interface to operate a 7-DoF
Kinova JACO robotic arm in this study. The sip/puff, a discrete 1D interface, of-
fers four interface-level actions—hard puff, hard sip, soft puff, soft sip—that map
to different robot control actions depending on the current control mode m—the
robot’s operational subspace. To control the JACO, hard puff/sips correspond to
mode-switching commands, while soft puff/sips denote positive/negative motion
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Fig. 2. Top: Study setup. Participants use a
sip/puff interface to teleoperate a robotic arm to
retrieve a cup from a shelf and place it on the ta-
ble. Bottom: The sip/puff interface.

within a control dimension. The
robot’s state is defined to be
[x, y, z, roll, pitch, yaw, gripper]
and the mode m.

Study Task The study incor-
porated a representative con-
strained manipulation task, fea-
turing elements common in Ac-
tivities of Daily Living (ADL),
including constrained grasping
and object placement [6]. The
task involved navigating narrow
spaces to grasp a cup from a
shelf and place it in a confined
area (Figure 2)—chosen for its
relevance and its known diffi-
culty for both human teleoper-
ation of an SE(3) robotic arm
and robotic path-planners [5].

Study Procedure The study consisted of three phases of training and testing.
In Phase 1, participants learned to use a sip/puff interface to issue control inputs,
with testing involving screen prompts for different interface actions. This data
was then used to create a personalized model for each participant to capture
their unique input signal distortions. We utilized histogram binning to construct
the personalized models, leveraging its simplicity, visual clarity, and insight into
human variability and internal models. This non-parametric approach avoids as-
sumptions about distribution forms, aptly capturing authentic human patterns
and enhancing outlier robustness.Phase 2 trained participants on how to oper-
ate a robot arm using the sip/puff interface, including the range of achievable
motions and mode switching commands. Testing involved showing participants
a control action on the robot and asking for the corresponding interface-level
action, with this data used to construct a personalized model (using the same
modeling technique in Phase 1) of each participant’s internal control mapping.
Phase 3 had participants use the sip/puff to control the robot arm for an Ac-
tivites of Daily Living inspired task, initially with a free exploration period, fol-
lowed by testing both with personalized task-agnostic interface-aware assistance
and without any assistance. Post-testing, participants filled out a NASA Task
Load Index questionnaire to assess mental workload and shared their preferences
regarding the operation of the robot.

5 Results

Participant Profiles and Performance Analysis The details of each case
study participant and their experiences are presented with quantitative result
metrics presented in Table 1.
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Case 1 The participant, a 40-year-old woman with a cervical-level spinal cord
injury, has been a daily powered wheelchair user with a right-handed joystick
interface for 20 years, and has some experience and comfort with robotic devices.
Her training proceeded smoothly with signs of improvement, but phase 2 testing
for building the internal model introduced confusion, leading to a noisy internal
model map and stochastic input model. Despite this, she successfully completed
the task with and without interface-aware task-agnostic assistance, albeit with
collisions in the latter case. The participant reported a lower NASA-TLX score,
indicating lower mental workload, when using the assistance system.

Case 2 The second participant, a 58-year-old man with a cervical-level spinal
cord injury, is not a powered wheelchair user but is accustomed to new tech-
nology and enjoys video gaming. Despite initial struggles, the participant’s high
confidence resulted in perceived control over the robot and interface, with a low
NASA-TLX score indicating reduced mental workload. He experienced numerous
collisions without assistance and succeeded only once per assistance condition.
The assistance system identified many unintended commands, resulting in a sig-
nificant number of mode switches. However, the assistance system reduced task
completion time via quicker automatic mode switch corrections.

Table 1. Hardware Trial Metrics for Participants 1 & 2

Participant
Assistance
condition

Trial
success

collisions
# mode
switches

Task
time (s)

TLX
score

Case 1 None [1, 1] [0, 2] [34, 49] [119, 167] 52.3

Case 1 Ours [1, 1] [0, 0] [33, 61] [124, 149] 49.5

Case 2 None [1, 0] [5, 6] [135, 126] [455, 528] 8.8

Case 2 Ours [0, 1] [0, 0] [171, 206] [350, 351] 8.6

6 Analysis and Interpretation

The initial results from the case studies reveal intriguing outcomes. The case
studies also elucidate the disparities that can arise when transitioning from
simulation-based toy experiments to real-world hardware setups.

Main Experimental Insights. Even without any knowledge of the task at
hand, our task-agnostic interface-aware assistance demonstrated a promising im-
provement in performance metrics, especially for Case 2. Here we elaborate and
expand on the key insights and guidance for future work.

Simulation vs. Real-World Discrepancies: Observation: There was a no-
table difference between tasks in Phase 1 and 2, designed to gather data to build
personalized participant models, and the ADL evaluation task in Phase 3. The
real hardware presented challenges in effectively crafting these models. Testing
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methods differed from natural robot interaction, causing confusion during the
transition from training to testing tasks. This emphasizes the importance of en-
suring training and testing methods mirror real-world device operation. Action
Item: Ensure that training and testing tasks closely emulate real robot opera-
tions, avoiding abstractions like verbal selections. Refine the test procedures to
capture genuine user interactions and reduce potential confusion.

Case Differentiation: Observation: The performance variation between the
two cases highlighted both human variability and cognitive adaptability. Case 1
showed a stronger internal model, due to prior experience with similar devices.
Case 2 showcased adaptability, possibly enhanced by familiarity with video gam-
ing. Action Item: Condition on user background when analyzing performance
and adaptability.

Performance Improvements and Plateaus: Observation: Case 2 witnessed a
marked (30%) reduction in task completion time. This underscores the system’s
potential in aiding users unfamiliar with the interface. Case 1’s times, however,
seemed to reach a performance plateau. Action Item: Investigate ways to further
enhance task performance, including how to address performance plateaus.

Safety Improvements: Observation: A noticeable advantage was the enhance-
ment in safety, with the assistance system preventing all collisions observed dur-
ing unassisted operations. Action Item: Maintain and further improve the safety
features of the system, keeping real-world applications in mind.

User Feedback and System Limitations: Observation: Participants per-
ceived the robot as obstructive, stemming from the algorithm’s conservative
safety measures. This led to confusion, stemming in part from an incomplete
understanding of the assistance system operation. Action Item: Enhance sys-
tem transparency via communication and feedback mechanisms. Optimize for a
reduction in user confusion during the design of safety conditions.

Cognitive Load: Observation: Differences in TLX scores among participants
indicated varying cognitive load assessments, possibly influenced by individual
backgrounds, such as experience with video gaming. Action Item: Consider di-
verse participant backgrounds when evaluating cognitive load and devise strate-
gies to mitigate any potential load.

Mode Switches: Observation: There was an unexpected increase in mode
switches with the active assistance system, which might be due to either correc-
tive mode switches by the system or inaccurate action estimates. Action Item:
Investigate the user-system interaction dynamics to understand the cause behind
increased mode switches and rectify any identified issues.

Improvement Strategies. Based on the insights and guidance above, we pro-
pose the following steps to improve user interaction with our assistive system.

System Transparency: Communication is key. Ensure users understand the
system’s assistance, especially during complex robotic arm movements. Intro-
duce subtle cues to help participants grasp the robot’s intentions.
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Model Building and Human Training: Adapt models from simulation for
the real world. Use more realistic methods to capture personalized distribution,
update data collection methods, and adopt audio cues to enhance training. En-
able direct engagement with the robot arm during training, to offer a more
intuitive learning experience.

7 Conclusion

We presented the hardware implementation and task-agnostic evolution of our
interface-aware robotic assistance framework, demonstrated through a feasibil-
ity study where two spinal cord injured individuals evaluated its potential and
limitations in an ADL manipulation task. The case studies revealed the system’s
potential and the challenges of moving from simulation to real-world settings,
guiding future refinements in methodology and design.
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