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ABSTRACT
In this work, we present an evolution of system designs and studies

that aim to facilitate the operation of high-DoF assistive robotic

arms by persons with upper limb paralysis. We highlight the exper-

imental pipeline and note developments in our efforts to design a

suitable control map that can convert low variance residual body

motions from neuromotor-impaired populations into 6-D veloc-

ity control signals for use in teleoperating a 7-DOF robotic arm.

Notably, we provide results from variance analyses on raw IMU

control signals from both neuromotor-impaired and unimpaired

populations, and an analysis of the intrinsic dimensionality of map-

building datasets gathered with and without movement guidance.

We then present a preliminary 13-session study that vets the control

map developed in light of these findings.
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1 INTRODUCTION
The variations in neuromotor impairment necessitate customized
assistance solutions. Neuromotor impairments can present in a num-

ber of ways, even when they stem from a similar type of injury [9].

There are instances in which these end-users of assistive devices,
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such as wheelchairs or robotic arms, lack access to control interfaces

able to account for their specific physiological constraints—and as

a result, lack access to the assistive device itself.

A Body-Machine Interface (BoMI) [3, 7, 13] is an example of an

interface able to customize to the residual movements of an indi-

vidual, especially in their shoulders and arms, with demonstrated

ability [6] to produce sufficiently high-dimensional control signals

to operate a robotic arm without the need for switching between

subsets of the control space. Critically, this high-dimensional con-

trol to date has been demonstrated only in persons without injury.

In this work, we extend prior work on BoMI control of robotic arms

to the use case of persons with cervical Spinal Cord Injury (cSCI).

A survey of spinal cord injury survivors with tetraplegia found

their highest priority to be recovery of arm and hand function [2].

We consider in this work the recovery of that function via operation

of an assistive robotic arm. Prior work [6] uses a statically-defined

expert map derived via Principle Component Analysis (PCA) to

convert 36-D upper body kinematics (captured via Inertial Mea-

surement Units (IMUs)) into 6-D commands to operate a 6-DoF

robotic arm, and then observational tuning to customize the expert

map for each uninjured participant. Typically 6-DoF robot tele-

operation by persons with motor impairments requires switching

between control modes [5], that are subsets of the robot control

space, with the result of added cognitive and physical burden. The

reason is because the interfaces accessible to them (e.g. sip-and-

puff, head array, perhaps joystick) span only a portion of a control

space (1-D to 3-D). The demonstration [6] of robot teleoperation

using a high-DoF BoMI control signal that obviates the need for

mode switching, paired with the target of utility for populations

with upper-body paralysis, prompts our current investigation into

deriving customized BoMI maps that are suitable for use by, and

derivation from, the movement capabilities of individuals with

upper-body motor impairments.

Adapting high-DoF BoMI control to target populations with

upper body paralysis poses new challenges, due to the reduced

range of motion (RoM) at various levels of injury. Prior systems

either control at most 2-DoF [3, 8], or have been operated by persons

without mobility limitations [6]. To address these challenges, we

first conduct a scoping study (Sec. 3) to gather RoM data from

three individuals with cSCI performing a variety of body motion

prompts, selected both to be accessible to the participant and to

contain sufficient variance to generate a controllable 6-DoF map.

Our exploratory analysis (Sec. 2) of the intrinsic dimensionality of
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unguided movements motivates the need for such guidance. We

thus propose to use guided prompts to design a supervised BoMI

mapping, which ties each prompt to a specific DoF of the robotic

arm. We then vet this supervised BoMI map, along with an iterative

training paradigm, in a 13-session study in which an uninjured

participant operates an assistive robotic arm (Sec. 4).

2 MOTIVATION: DIMENSIONALITY ANALYSIS
We hypothesize that the traditional method of BoMI map genera-

tion, that extracts control signals from upper body movements in

an unsupervised way [4, 11, 12], will not be suitable for control of

devices with many DoFs even with the use of nonlinear mappings.

To investigate this hypothesis, we first evaluate whether the Intrin-

sic Dimensionality (ID) of the free exploration data that is typically

used to extract a BoMI control map matches the number of DoFs (6)

required to position the end-effector of a robotic arm (3-D position

+ 3-D orientation). We can consider the ID of a given input dataset

as reflecting of the ability of a participant to independently activate

each DoF of the robot control.

In an exploratory analysis, we quantify the ID of free exploration

data gathered from four uninjured lab members (2F/2M, age 24.5

± 3.6) with no history of neurological disorders and who exhibit

normal joint RoM. Free exploration data are recorded as they move

their shoulders and upper arms for two minutes within the limits

of their range of motion. We then estimate the ID by applying

Parallel Analysis (PA) to the quaternion values recorded by the

IMUs during free exploration. PA estimates the ID of those free

upper body movements to be 2.7. This number is significantly lower

than the number of DoF we aim for the BoMI users to control

independently (6) and suggests that there is not enough information

in the IMU signals to extract a high-dimensional map using purely

unsupervised (free exploration) movements.

3 SCOPING STUDY
Our scoping study aims to determine whether guided movement

prompts, with suitably high ID for 6-DoF robot control, are feasible

persons with upper-body movement limitations to execute.

3.1 Experimental Design
The scoping study consists of a single experimental session in

which participants are instructed to perform six distinct body-
motion prompts (shoulder forward/backward, shoulder up/down,
elbow in/out). We record the kinematic signals from the partici-

pants’ shoulders and arms using 6 IMUs (3 Space Sensors, Yost Labs,

Portsmouth, OH, USA) placed bilaterally on each shoulder (two per

side on the anterior and posterior part of the shoulder) and arm

(Fig. 1B). Each IMU derives orientation using an on-board sensor

fusion algorithm in the quaternion format.

Participants are asked to perform each body-motion prompt,

passing through the ’zero point’ (the rest position of the body) be-

tween prompts, for twominutes. During data collection, a computer

monitor is placed directly in front of the participant to display slides

depicting the appropriate body motion prompts. We also collect

free exploration data in which the participant is asked to span the

range of possible upper body movements by freely moving their

shoulders and arms for two minutes.
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Figure 1: Comparison of net amount of motion between cSCI
(red) and uninjured (black) volunteers. The percentage of
variance measured by each of the four IMUs placed on partic-
ipants’ shoulders and arms, relative to the maximum value
recorded within the uninjured population. Error bars show
standard deviation. The shoulders of cSCI participants exhib-
ited lower net motion in comparison to those without injury,
whereas the net motion of the arms was relatively consistent
across the two populations.

3.2 Participants
Three participants with cervical spinal cord injury (cSCI) were re-

cruited. cSCI is defined in this study as either a complete (ASIA

A) lesion at C3-6 or an incomplete injury (ASIA B, C, or D) lesion

in the cervical cord or upper thoracic region (T1-T4). Potential

cSCI participants were further screened for the presence of tremors,

spasm, and/or other significant involuntary movements. All par-

ticipants gave their informed, signed consent to participate in the

experiment which was approved by the Northwestern University

Institutional Review Board (IRB). Recruitment targeted spanning

the range of injury level for which we expect a BoMI-controlled

robotic arm to be of utility: for a complete injury at the cervical

cord, shoulder movement no longer is possible to operate the BoMI

interface, while for lower levels of SCI, without any upper limb

paralysis, the need for assistance from a robotic arm is diminished.

The levels of injury of the three SCI participants were: C3 Complete,

C4 Incomplete, and C5 Incomplete (3M, age 63 ± 20.4).

3.3 Results
The amount of variance measured during each body motion prompt

is related to the ID of this movement set. Having established the

ID of the uninjured dataset to be 6 (Sec. 2), we now compare the

variance represented within the uninjured and SCI datasets.

We compute the variance of the orientation (quaternion) values

recorded by each IMU and for each body prompt to determine the

net amount of motion on the participants’ shoulders and arms. To

better interpret variance expressed by quaternions, we normalize

this metric for each IMU to the variance exhibited by the unimpaired

participant with the largest value across the prompts (as in [10]).

We find the range of motion of the cSCI participants during the

shoulder and arm prompts to be comparable to that of the uninjured

population (Fig. 1). The cSCI participants retain 73.8 ± 1.3% of the
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Figure 2: Experimental setup showing (A) the process chart of our BoMI system, (B) body placement of the BoMI IMUs to
control an assistive robotic arm, (C) the icosahedral cage that presents reaching targets (LED-illuminated blocks), and (D) the
BoMI visualizer feedback GUI, where each channel (wedge) represents one of the six dimensions of BoMI control. Color-coded
arcs are controllable by the BoMI, in positive and negative directions radiating out from the deadzone (gray).

net amount of motion exhibited in the unimpaired data, when

averaged across all prompts and sensor placements. Interestingly,

the net amount of motion of the IMUs placed on the arms of the

cSCI participants is notably larger than that of the sensors placed

on their shoulders. We posit that this is due to the larger rotational

variance present in sensors affixed to the end-user’s elbow frame

as opposed to the shoulder frame.

4 VETTING STUDY
From the results of our dimensionality analysis and scoping study,

additional system changes were required in order to achieve viable

online control with the robot; these changes include sensor place-

ment, automated scaling of dimensional gains, and changes to our

collection protocol. These changes have been implemented, and vet-

ted in a preliminary study executed over 13 sessions during which

a training paradigm is employed that pairs a phased scaling up of

controllable dimensions with assistance from robotics autonomy.

4.1 Experimental Design
In the vetting study, we aim to gain insights into how a participant

learns to interact with the robotic arm using a supervised map based
on classifying the six body prompts explored in the scoping study.

The study furthermore follows a sliding dimensionality training
paradigm to aid in human learning.

Training Paradigm. The phased learning protocol iteratively un-

locks control dimensions to the user, and additionally engages

adaptive robot autonomy to assist with learning. In particular, the

user begins with operating only 3 dimensions of the BoMI, which

map to position control of the robot end-effector. Sessions evolve

in groups of three, where each new block of three sessions unlocks

an additional control dimension, and the progression of control

dimension unlocking occurs as 3→4→5→6.

Robot autonomy is employed to assist with learning. Throughout

and across a 3-session block, we iteratively reduce the autonomy

contribution to in turn reduce participant dependence on autonomy

assistance. At the start of a new block, a high level of assistance

is engaged, which is gradually pulled back over the three sessions

until the human is in full control by the end of the third session [1].

The autonomy signal is generated via a potential fields controller

that knows of obstacles (table, cage) and the target location. The

autonomy signal is linearly blended with the user command via:

u = (1 − 𝛼) · uℎ𝑢𝑚𝑎𝑛 + 𝛼 · u𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑦

and progressively decreasing the value of𝛼 accomplishes the phased

reduction in autonomy assistance. The𝛼 adaptation schedulewithin

a given block proceeds as 𝛼 = 0.8 → 0.6 → 0.3 → 0.

Hardware. In this study, a participant interfaces with a 7-DoF

JACO v2.0 robotic arm (Kinova Robotics, Quebec, Canada) using

the BoMI. This is a non-anthropomorphic armwith 7 revolute joints

defining its configuration and an additional DoF defining the state

of the gripper. For this application, participants do not have control

over the gripper state, and Kinova’s inverse kinematics maps the

6-D robot (end-effector) control command to the 7 robot joints. The

BoMI-mounted IMUs (MbientLab, San Jose, CA) collect orientation

data from the end-user at 40 Hz, formatted as quaternions. These

quaternions are transformed via our mapping scheme to the 6-D

end-effector (x, y, z, pitch, yaw, roll) control. The Kinova onboard

controller maps these control signals to joint torques which will

move the end-effector along the actuated control dimension.

Targets for reaching tasks are presented as wooden blocks affixed

to the inside boundaries of an icosahedral cage, as shown in Figure

1C. The current target is indicated by an illuminated LED.

Supervised Map. The BoMI map (Fig. 1A) first predicts which

motion prompt(s) the user currently is performing, and then con-

verts the related upper body kinematics into a control signal to

proportionally activate the robot DoF associated with the detected

prompt(s).

Specifically, the supervised map first uses a k-nearest neighbors

classifier to predict a probability distribution over the six motion

prompts, taking the high-dimensional IMU signal as input. Each

prompt label corresponds to a single robot DoF, and so the classifier

output thus maps to activation of the robot end-effector control

dimensions. The correspondence is chosen to loosely mirror end-

effector translational movements with human shoulder movements:
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right human [shoulder up/down, shoulder forward/back, arm ab-

duction/adduction] → robot hand [up/down ( ¤𝑧), forward/back ( ¤𝑦),
left/right ( ¤𝑥)], and left human [shoulder up/down, shoulder for-

ward/back, arm abduction/adduction]→ robot hand [pitch (
¤𝜙𝑝𝑖𝑡𝑐ℎ),

roll (
¤𝜙𝑟𝑜𝑙𝑙 ), yaw (

¤𝜙𝑝𝑖𝑡𝑐ℎ)].
To determine the amplitude of the control command for each

robot DoF, we derive six PCA maps from the collected user prompt

data, one for each body-motion prompt. At runtime, we then use

the value of each map’s first principal component to proportionally

move the corresponding robot DoF.

A screen-based 2-D task conveys visual feedback to the partici-

pant about their activation of each BoMI dimension. Created using

the Pyglet wrapper for the OpenGL library, this environment con-

sists of 6 wedge-like ‘channels’ arrayed radially to form a full circle

(Fig. 2D). Each channel corresponds to a different control dimension

and has two types of arcs: (1) a color-coded arc that the participant

is able to control via the BoMI, and (2) a thin grey arc centered on

the deadzone associated with each dimension.

This method of feedback is designed to be easier (than non-

anthropomorphic robot arm motion) to visually parse when users

first operate the BoMI. We also use this task to determine whether

a map is usable, defined as the participant being able to activate

each channel in both directions using their body motions.

Protocol. The first session is devoted to calibrating the BoMI map

and does not involve interaction with the robot. Instead, two calibra-

tion datasets are collected using different protocols: the participant

(1) performs a full cycle of the six prompts successively, six times,

and (2) repeatedly performs each individual prompt for 45 seconds

per prompt. Both datasets are used (together) in the computation of

the BoMI map. Participants then perform the body-motion prompts

while interfacing with the feedback GUI to determine usability.

The remaining 12 sessions execute sequential reaching tasks.

The participant is asked to teleoperate the robotic arm to reach a

sequence of targets (45 in total). A target is considered achieved if

the position and orientation of the end-effector of the robot relative

to the position and orientation of the target is within a threshold

(15 cm for position, 0.1 rad for orientation). The participant has

45 seconds to accomplish a reach task. At the end of a set of three

targets, the robot arm returns to its home position at the center of

the cage before commencing another set of three targets.

4.2 Participants
One uninjured participant was recruited (1M, age 45). This partic-

ipant was screened for past experience with assistive interfaces,

ability to perform gross upper-arm and shoulder motions, and ab-

sence of chronic injuries of the back and spine. The participant

gave their informed, signed consent to participate in the experi-

ment which was approved by the Northwestern University IRB.

4.3 Results
Our analysis of this data is ongoing. Anecdotally, we confirm that

the participant was able to successfully reach targets during each

phase of the training paradigm (in each study session), even as the

number of controllable dimensions increased and assistance from

robotics autonomy was scaled back.

Figure 3: Likert responses. Mean across all (3) ease of use
responses within a training block, for each of the 4 blocks.

We present here preliminary findings relating to perceived ease

of use, assessed via Likert-scale questionnaire response to "It was

easy to issue my intended command." In the session during which a

new dimensionwas unlocked, the participant, on average, expressed

that the system was more difficult to use, even with the highest

level of autonomy assistance (highest 𝛼 value).

Figure 3 presents the average (over 3 sessions) response within

a given block. We observe ease of use progressively decline as

dimensions are unlocked, with one exception: the final unlock,

which in practice did not change the controllability of the system as

none of the targets explicitly required motion in this final unlocked

dimension (roll). Overall, these results speak to the difficulty of high

dimensional control. One interpretation of the final unlock anomaly

is the promise of continued practice: that having essentially hit the

limit on robot operation complexity in the prior training block,

the final block becomes essentially more practice at the plateaued

complexity level, and ease of use increases during this practice.

5 CONCLUSION
In this work, we found that traditional methods of mapping body

motion to control signals via a body-machine interface are not

sufficient for populations with reduced range of motion (due to

neuromotor impairment) and supported these claims by consider-

ing the intrinsic dimensionality of both impaired and unimpaired

populations. We also vetted our experimental pipeline for gener-

ating user-specific BoMI maps (as well as training participants to

use those maps) on an unimpaired participant. Our next step is to

apply feedback from both studies to our experimental pipeline in

preparation for a longitudinal with cSCI participants.
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